A351429
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 + f^k(x)), where f(x) = exp(x) - 1.
Original entry on oeis.org
1, 1, -1, 1, -1, 2, 1, -1, 1, -6, 1, -1, 0, -1, 24, 1, -1, -1, 1, 1, -120, 1, -1, -2, 0, 1, -1, 720, 1, -1, -3, -4, 6, -2, 1, -5040, 1, -1, -4, -11, -2, 32, -9, -1, 40320, 1, -1, -5, -21, -41, 76, 115, -9, 1, -362880, 1, -1, -6, -34, -129, -75, 953, 172, 50, -1, 3628800
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
-1, -1, -1, -1, -1, -1, -1, ...
2, 1, 0, -1, -2, -3, -4, ...
-6, -1, 1, 0, -4, -11, -21, ...
24, 1, 1, 6, -2, -41, -129, ...
-120, -1, -2, 32, 76, -75, -806, ...
720, 1, -9, 115, 953, 1540, -3334, ...
-
A:= (n, k)-> n!*(g->coeff(series(1/(1+(g@@k)(x)), x, n+1), x, n))(x->exp(x)-1):
seq(seq(A(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Feb 11 2022
-
T[n_, 0] := (-1)^n*n!; T[n_, k_] := T[n, k] = Sum[StirlingS2[n, j]*T[j, k - 1], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 11 2022 *)
-
T(n, k) = if(k==0, (-1)^n*n!, sum(j=0, n, stirling(n, j, 2)*T(j, k-1)));
A363007
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 - f^k(x)), where f(x) = exp(x) - 1.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 13, 24, 1, 1, 5, 23, 75, 120, 1, 1, 6, 36, 175, 541, 720, 1, 1, 7, 52, 342, 1662, 4683, 5040, 1, 1, 8, 71, 594, 4048, 18937, 47293, 40320, 1, 1, 9, 93, 949, 8444, 57437, 251729, 545835, 362880, 1, 1, 10, 118, 1425, 15775, 143783, 950512, 3824282, 7087261, 3628800
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
2, 3, 4, 5, 6, 7, ...
6, 13, 23, 36, 52, 71, ...
24, 75, 175, 342, 594, 949, ...
120, 541, 1662, 4048, 8444, 15775, ...
-
T(n, k) = if(k==0, n!, sum(j=0, n, stirling(n, j, 2)*T(j, k-1)));
A351424
a(n) = n! * [x^n] -log(1 - f^(n-1)(x)), where f(x) = log(1+x).
Original entry on oeis.org
1, 0, 3, -48, 1270, -50375, 2803829, -208616562, 20003317746, -2402323535658, 353219463307920, -62411008199372327, 13048469028962425266, -3186116313706825820802, 898478811755719496052919, -289795933163271680910773018, 106008143082108931457543700504
Offset: 1
-
g:= x-> log(1+x):
a:= n-> n! * coeff(series(-log(1-(g@@(n-1))(x)), x, n+1), x, n):
seq(a(n), n=1..19); # Alois P. Heinz, Feb 11 2022
-
T[n_, 1] := (n - 1)!; T[n_, k_] := T[n, k] = Sum[StirlingS1[n, j] * T[j, k - 1], {j, 1, n}]; a[n_] := T[n, n]; Array[a, 16] (* Amiram Eldar, Feb 11 2022 *)
-
T(n, k) = if(k==1, (n-1)!, sum(j=1, n, stirling(n, j, 1)*T(j, k-1)));
a(n) = T(n, n);
A351422
Expansion of e.g.f. -log(1 - log(1 + log(1 + log(1+x)))).
Original entry on oeis.org
1, -2, 8, -48, 386, -3905, 47701, -683592, 11250291, -209168071, 4336482905, -99197868847, 2481962140797, -67426166949102, 1976463051528507, -62178381389729317, 2089532143617395264, -74702625442877063902, 2830904065389397804534, -113348477836878447492630
Offset: 1
-
T[n_, 1] := (n - 1)!; T[n_, k_] := T[n, k] = Sum[StirlingS1[n, j] * T[j, k - 1], {j, 1, n}]; a[n_] := T[n, 4]; Array[a, 20] (* Amiram Eldar, Feb 11 2022 *)
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(-log(1-log(1+log(1+log(1+x))))))
-
T(n, k) = if(k==1, (n-1)!, sum(j=1, n, stirling(n, j, 1)*T(j, k-1)));
a(n) = T(n, 4);
A351423
Expansion of e.g.f. -log(1 - log(1 + log(1 + log(1 + log(1+x))))).
Original entry on oeis.org
1, -3, 16, -124, 1270, -16243, 249776, -4494334, 92716855, -2158505443, 55996266046, -1602132913687, 50124833578256, -1702501170925098, 62391472267252322, -2453892459756494459, 103101294099324376489, -4608723131704380915202
Offset: 1
-
T[n_, 1] := (n - 1)!; T[n_, k_] := T[n, k] = Sum[StirlingS1[n, j] * T[j, k - 1], {j, 1, n}]; a[n_] := T[n, 5]; Array[a, 18] (* Amiram Eldar, Feb 11 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(-log(1-log(1+log(1+log(1+log(1+x)))))))
-
T(n, k) = if(k==1, (n-1)!, sum(j=1, n, stirling(n, j, 1)*T(j, k-1)));
a(n) = T(n, 5);
A351421
Expansion of e.g.f. -log(1 - log(1 + log(1+x))).
Original entry on oeis.org
1, -1, 3, -13, 77, -576, 5219, -55567, 680028, -9405302, 145067040, -2468571128, 45936991110, -927915150852, 20219040931738, -472697857817078, 11801903989774760, -313395752536945568, 8819464678850030936, -262185434197432956664, 8210080944919085511680
Offset: 1
-
T[n_, 1] := (n - 1)!; T[n_, k_] := T[n, k] = Sum[StirlingS1[n, j] * T[j, k - 1], {j, 1, n}]; a[n_] := T[n, 3]; Array[a, 21] (* Amiram Eldar, Feb 11 2022 *)
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(-log(1-log(1+log(1+x)))))
-
T(n, k) = if(k==1, (n-1)!, sum(j=1, n, stirling(n, j, 1)*T(j, k-1)));
a(n) = T(n, 3);
Showing 1-6 of 6 results.