cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A353443 Integers m such that the decimal expansion of 1/m contains the digit 7.

Original entry on oeis.org

7, 13, 14, 17, 19, 21, 23, 27, 28, 29, 34, 35, 36, 37, 38, 43, 44, 46, 47, 49, 51, 52, 53, 56, 57, 58, 59, 61, 63, 67, 68, 69, 70, 71, 76, 77, 79, 81, 83, 84, 85, 86, 87, 89, 92, 93, 94, 95, 97, 98, 102, 103, 107, 109, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 126, 127
Offset: 1

Views

Author

Keywords

Comments

If m is a term, 10*m is also a term, so terms with no trailing zeros are all primitive terms.

Examples

			m = 7 is a term since 1/7 = 0.142857142857...
m = 27 is a term since 1/27 = 0.037037037... (here, 7 is the largest digit).
		

Crossrefs

A351473 (largest digit=7) is a subsequence.
Similar with digit k: A352154 (k=0), A353437 (k=1), A353438 (k=2), A353439 (k=3), A353440 (k=4), A353441 (k=5), A353442 (k=6), this sequence (k=7), A353444 (k=8), A333237 (k=9).

Programs

  • Mathematica
    f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[ Range@ 150, MemberQ[f@#, 7] &]

A351470 Numbers m such that the largest digit in the decimal expansion of 1/m is 4.

Original entry on oeis.org

25, 225, 250, 693, 2250, 2439, 2475, 2500, 3285, 4095, 4125, 6930, 6993, 22500, 22725, 23125, 23245, 24390, 24750, 24975, 25000, 30825, 32850, 40950, 41250, 41625, 42735, 69300, 69375, 69735, 69930, 71225, 225000, 225225, 227250, 231250, 232450, 238095, 243309, 243900, 247500, 249750
Offset: 1

Views

Author

Keywords

Comments

If k is a term, 10*k is also a term.
First few primitive terms are 25, 225, 693, 2439, 2475, 3285, 4095, 4125, ...
There is no prime up to 2.6*10^8 (see comments in A333237).

Examples

			As 1/25 = 0.04, and 25 is the smallest number m such that the largest digit in the decimal expansion of 1/m is 4, so a(1) = 25.
As 1/693 = 0.001443001443001443..., so 693 is a term.
		

Crossrefs

Cf. A333236.
Similar with largest digit k: A333402 (k=1), A341383 (k=2), A350814 (k=3), this sequence (k=4), A351471 (k=5), A351472 (k=6), A351473 (k=7), A351474 (k=8), A333237 (k=9).

Programs

  • Mathematica
    f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]];Select[Range@1500000, Max@ f@# == 4 &]
  • Python
    from itertools import count, islice
    from sympy import n_order, multiplicity
    def A351470_gen(startvalue=1): # generator of terms >= startvalue
        for m in count(max(startvalue, 1)):
            m2, m5 = multiplicity(2, m), multiplicity(5, m)
            if max(str(10**(max(m2, m5)+n_order(10, m//2**m2//5**m5))//m)) == '4':
                yield m
    A351470_list = list(islice(A351470_gen(), 10)) # Chai Wah Wu, Feb 14 2022

A351471 Numbers m such that the largest digit in the decimal expansion of 1/m is 5.

Original entry on oeis.org

2, 4, 8, 18, 20, 22, 32, 40, 66, 74, 80, 180, 185, 198, 200, 220, 222, 320, 396, 400, 444, 492, 660, 666, 702, 704, 738, 740, 800, 803, 876, 1800, 1818, 1845, 1848, 1850, 1875, 1912, 1980, 1998, 2000, 2200, 2220, 2222, 2409, 2424, 2466, 2849, 3075, 3200, 3212, 3276, 3960, 3996, 4000
Offset: 1

Views

Author

Keywords

Comments

If k is a term, 10*k is also a term.
First few primitive terms are 2, 4, 8, 18, 22, 32, 66, 74, 185, 198, 222, 396, ...
2 and 4649 are the only primes up to 2.6*10^8 (see comments in A333237).
Some subsequences:
{2, 22, 222, 2222, ...} = A002276 \ {0}.
{66, 666, 6666, ...} = A002280 \ {0, 6}.
{18, 1818, 181818, ...} = 18 * A094028.

Examples

			As 1/8 = 0.125, 8 is a term.
As 1/4649 = 0.000215121512151..., 4649 is a term.
		

Crossrefs

Subsequences: A002276, A002280.
Similar with largest digit k: A333402 (k=1), A341383 (k=2), A350814 (k=3), A351470 (k=4), this sequence (k=5), A351472 (k=6), A351473 (k=7), A351474 (k=8), A333237 (k=9).
Cf. A333236.

Programs

  • Mathematica
    f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[Range@1500000, Max@ f@# == 5 &]
  • Python
    from itertools import count, islice
    from sympy import n_order, multiplicity
    def A351471_gen(startvalue=1): # generator of terms >= startvalue
        for m in count(max(startvalue, 1)):
            m2, m5 = multiplicity(2, m), multiplicity(5, m)
            if max(str(10**(max(m2, m5)+n_order(10, m//2**m2//5**m5))//m)) == '5':
                yield m
    A351471_list = list(islice(A351471_gen(), 10)) # Chai Wah Wu, Feb 15 2022

A351472 Numbers m such that the largest digit in the decimal expansion of 1/m is 6.

Original entry on oeis.org

6, 15, 16, 24, 39, 60, 64, 88, 96, 150, 156, 160, 165, 219, 240, 246, 273, 275, 375, 378, 384, 390, 399, 462, 600, 606, 615, 624, 625, 640, 792, 822, 858, 880, 888, 956, 960, 975, 984, 1500, 1515, 1536, 1554, 1560, 1584, 1596, 1600, 1606, 1626, 1628, 1638, 1650, 1665, 1776, 2145
Offset: 1

Views

Author

Keywords

Comments

If k is a term, 10*k is also a term.
First few primitive terms are 6, 15, 16, 24, 39, 64, 88, 96, 156, 165, ...
There is no prime up to 2.6*10^8 (see comments in A333237).
Subsequence: {6, 606, 60606, ...} = 6 * A094028.

Examples

			1/6 = 0.166666..., and 6 is the smallest number m such that the largest digit in the decimal expansion of 1/m is 6, so a(1) = 6.
As 1/39 = 0.025641025641..., 39 is a term.
		

Crossrefs

Similar with largest digit k: A333402 (k=1), A341383 (k=2), A350814 (k=3), A351470 (k=4), A351471 (k=5), this sequence (k=6), A351473 (k=7), A351474 (k=8), A333237 (k=9).

Programs

  • Mathematica
    f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[Range@1500000, Max@ f@# == 6 &]
  • Python
    from itertools import count, islice
    from sympy import n_order, multiplicity
    def A351472_gen(startvalue=1): # generator of terms >= startvalue
        for m in count(max(startvalue, 1)):
            m2, m5 = multiplicity(2, m), multiplicity(5, m)
            if max(str(10**(max(m2, m5)+n_order(10, m//2**m2//5**m5))//m)) == '6':
                yield m
    A351472_list = list(islice(A351472_gen(), 20)) # Chai Wah Wu, Feb 17 2022

A351474 Numbers m such that the largest digit in the decimal expansion of 1/m is 8.

Original entry on oeis.org

7, 12, 14, 26, 28, 35, 48, 54, 55, 56, 63, 65, 70, 72, 78, 79, 93, 117, 120, 123, 125, 128, 140, 175, 176, 186, 192, 195, 205, 224, 239, 259, 260, 264, 280, 296, 312, 318, 328, 350, 372, 416, 432, 438, 448, 465, 480, 540, 542, 546, 548, 550, 555, 560, 572, 584, 594, 630, 632, 650, 675
Offset: 1

Views

Author

Keywords

Comments

If k is a term, 10*k is also a term. First few primitive terms are 7, 12, 14, 26, 28, 35, 48, 54, 55, 56, 63, 65, 72, ...
The seven primes up to 2.7*10^8 are 7, 79, 239, 62003, 538987, 35121409, 265371653 (see comments in A333237, example section and Crossrefs).

Examples

			As 1/7 = 0.142857142857142857..., 7 is a term.
As 1/26 = 0.0384615384615384615..., 26 is another term.
		

Crossrefs

Similar with largest digit k: A333402 (k=1), A341383 (k=2), A350814 (k=3), A351470 (k=4), A351471 (k=5), A351472 (k=6), A351473 (k=7), this sequence (k=8), A333237 (k=9).
Cf. A333236.
Decimal expansion of: A020806 (1/7), A021058 (1/54), A021060 (1/56), A021067 (1/63), A021069 (1/65), A021083 (1/79), A021097 (1/93).

Programs

  • Mathematica
    f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[Range@1500000, Max@ f@# == 8 &]
  • PARI
    isok(m) = my(m2=valuation(m, 2), m5=valuation(m, 5)); vecmax(digits(floor(10^(max(m2,m5) + znorder(Mod(10, m/2^m2/5^m5))+1)/m))) == 8; \\ Michel Marcus, Feb 26 2022
    
  • Python
    from itertools import count, islice
    from sympy import multiplicity, n_order
    def A351474_gen(startvalue=1): # generator of terms >= startvalue
        for a in count(max(startvalue,1)):
            m2, m5 = (~a&a-1).bit_length(), multiplicity(5,a)
            k, m = 10**max(m2,m5), 10**n_order(10,a//(1<A351474_list = list(islice(A351474_gen(),20)) # Chai Wah Wu, May 02 2023

Formula

A333236(a(n)) = 8.
Showing 1-5 of 5 results.