cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A353441 Integers m such that the decimal expansion of 1/m contains the digit 5.

Original entry on oeis.org

2, 4, 7, 8, 14, 16, 17, 18, 19, 20, 22, 23, 26, 28, 29, 31, 32, 34, 35, 38, 39, 40, 42, 43, 46, 47, 49, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 74, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 92, 93, 94, 95, 97, 98, 102, 103, 104, 105, 106, 107, 108, 109
Offset: 1

Views

Author

Keywords

Comments

If m is a term, 10*m is also a term, so terms with no trailing zeros are all primitive terms.

Examples

			m = 7 is a term since 1/7 = 0.142857142857...
m = 22 is a term since 1/22 = 0.04545454545... (here, 5 is the largest digit).
m = 132 is a term since 1/693 = 0.00757575... (here, 5 is the smallest digit).
		

Crossrefs

A351471 (largest digit=5) and A352159 (smallest digit=5) are subsequences.
Similar with digit k: A352154 (k=0), A353437 (k=1), A353438 (k=2), A353439 (k=3), A353440 (k=4), this sequence (k=5), A353442 (k=6), A353443 (k=7), A353444 (k=8), A333237 (k=9).
Complement of A362579.

Programs

  • Maple
    filter:= proc(n) local q;
      q:= NumberTheory:-RepeatingDecimal(1/n);
      member(5,RepeatingPart(q)) or member(5, NonRepeatingPart(q))
    end proc:
    select(filter, [$1..200]); # Robert Israel, Apr 25 2023
  • Mathematica
    f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[ Range@ 125, MemberQ[f@#, 5] &]
  • Python
    from itertools import count, islice
    from sympy import multiplicity, n_order
    def A353441_gen(startvalue=1): # generator of terms >= startvalue
        for a in count(max(startvalue,1)):
            m2, m5 = (~a&a-1).bit_length(), multiplicity(5,a)
            k, m = 10**max(m2,m5), 10**n_order(10,a//(1<A353441_list = list(islice(A353441_gen(),20)) # Chai Wah Wu, May 01 2023

A352159 Numbers m such that the smallest digit in the decimal expansion of 1/m is 5, ignoring leading and trailing 0's.

Original entry on oeis.org

2, 18, 20, 132, 148, 180, 200, 1320, 1480, 1800, 2000, 13008, 13200, 14544, 14800, 18000, 20000, 130080, 132000, 145440, 148000, 180000, 200000, 1300800, 1320000, 1454400, 1480000, 1734375, 1800000, 2000000, 11521152, 12890625, 13008000, 13200000, 14544000, 14800000
Offset: 1

Views

Author

Keywords

Comments

Leading 0's are not considered, otherwise every integer >= 11 would be a term (see examples).
Trailing 0's are also not considered, otherwise numbers of the form 2^i*5^j with i, j >= 0, apart from 1 (A003592) would be terms.
If k is a term, 10*k is also a term; so, terms with no trailing zeros are all primitive terms: 2, 18, 132, 148, 14544, ...

Examples

			m = 148 is a term since 1/148 = 0.00675675675... and the smallest digit after the leading 0's is 5.
m = 1320 is a term since 1/1320 = 0.000075757575... and the smallest digit after the leading 0's is 5.
		

Crossrefs

Cf. A351471.
Subsequence: A093136 \ {0}.
Similar with smallest digit k: A352154 (k=0), A352155 (k=1), A352156 (k=2), A352157 (k=3), A352158 (k=4), this sequence (k=5), A352160 (k=6), A352153 (no known term for k=7), A352161 (k=8), no term (k=9).

Programs

  • Mathematica
    f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[ Range@ 1100, Min@ f@# == 5 &]
  • PARI
    is(n) = my(d=#digits(n-1), m=9, r=10^d, x=valuation(n, 2), y=valuation(n, 5)); for(k=1, max(x,y)-d*(n==x=2^x*5^y)+znorder(Mod(10, n/x)), if(5>m=min(m, r\n), return(0)); r=r%n*10); m==5; \\ Jinyuan Wang, Mar 27 2022
    
  • Python
    from itertools import count,islice
    from sympy import multiplicity,n_order
    def A352159_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            m2, m5 = multiplicity(2,n), multiplicity(5,n)
            k, m = 10**max(m2,m5), 10**(t := n_order(10,n//2**m2//5**m5))-1
            c = k//n
            s = str(m*k//n-c*m).zfill(t)
            if s == '0' and min(str(c)) == '5':
                yield n
            elif '0' not in s and min(str(c).lstrip('0')+s) == '5':
                    yield n
    A352159_list = list(islice(A352159_gen(),10)) # Chai Wah Wu, Mar 28 2022

Formula

A352153(a(n)) = 5.

Extensions

More terms from Jinyuan Wang, Mar 27 2022

A351470 Numbers m such that the largest digit in the decimal expansion of 1/m is 4.

Original entry on oeis.org

25, 225, 250, 693, 2250, 2439, 2475, 2500, 3285, 4095, 4125, 6930, 6993, 22500, 22725, 23125, 23245, 24390, 24750, 24975, 25000, 30825, 32850, 40950, 41250, 41625, 42735, 69300, 69375, 69735, 69930, 71225, 225000, 225225, 227250, 231250, 232450, 238095, 243309, 243900, 247500, 249750
Offset: 1

Views

Author

Keywords

Comments

If k is a term, 10*k is also a term.
First few primitive terms are 25, 225, 693, 2439, 2475, 3285, 4095, 4125, ...
There is no prime up to 2.6*10^8 (see comments in A333237).

Examples

			As 1/25 = 0.04, and 25 is the smallest number m such that the largest digit in the decimal expansion of 1/m is 4, so a(1) = 25.
As 1/693 = 0.001443001443001443..., so 693 is a term.
		

Crossrefs

Cf. A333236.
Similar with largest digit k: A333402 (k=1), A341383 (k=2), A350814 (k=3), this sequence (k=4), A351471 (k=5), A351472 (k=6), A351473 (k=7), A351474 (k=8), A333237 (k=9).

Programs

  • Mathematica
    f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]];Select[Range@1500000, Max@ f@# == 4 &]
  • Python
    from itertools import count, islice
    from sympy import n_order, multiplicity
    def A351470_gen(startvalue=1): # generator of terms >= startvalue
        for m in count(max(startvalue, 1)):
            m2, m5 = multiplicity(2, m), multiplicity(5, m)
            if max(str(10**(max(m2, m5)+n_order(10, m//2**m2//5**m5))//m)) == '4':
                yield m
    A351470_list = list(islice(A351470_gen(), 10)) # Chai Wah Wu, Feb 14 2022

A351472 Numbers m such that the largest digit in the decimal expansion of 1/m is 6.

Original entry on oeis.org

6, 15, 16, 24, 39, 60, 64, 88, 96, 150, 156, 160, 165, 219, 240, 246, 273, 275, 375, 378, 384, 390, 399, 462, 600, 606, 615, 624, 625, 640, 792, 822, 858, 880, 888, 956, 960, 975, 984, 1500, 1515, 1536, 1554, 1560, 1584, 1596, 1600, 1606, 1626, 1628, 1638, 1650, 1665, 1776, 2145
Offset: 1

Views

Author

Keywords

Comments

If k is a term, 10*k is also a term.
First few primitive terms are 6, 15, 16, 24, 39, 64, 88, 96, 156, 165, ...
There is no prime up to 2.6*10^8 (see comments in A333237).
Subsequence: {6, 606, 60606, ...} = 6 * A094028.

Examples

			1/6 = 0.166666..., and 6 is the smallest number m such that the largest digit in the decimal expansion of 1/m is 6, so a(1) = 6.
As 1/39 = 0.025641025641..., 39 is a term.
		

Crossrefs

Similar with largest digit k: A333402 (k=1), A341383 (k=2), A350814 (k=3), A351470 (k=4), A351471 (k=5), this sequence (k=6), A351473 (k=7), A351474 (k=8), A333237 (k=9).

Programs

  • Mathematica
    f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[Range@1500000, Max@ f@# == 6 &]
  • Python
    from itertools import count, islice
    from sympy import n_order, multiplicity
    def A351472_gen(startvalue=1): # generator of terms >= startvalue
        for m in count(max(startvalue, 1)):
            m2, m5 = multiplicity(2, m), multiplicity(5, m)
            if max(str(10**(max(m2, m5)+n_order(10, m//2**m2//5**m5))//m)) == '6':
                yield m
    A351472_list = list(islice(A351472_gen(), 20)) # Chai Wah Wu, Feb 17 2022

A351474 Numbers m such that the largest digit in the decimal expansion of 1/m is 8.

Original entry on oeis.org

7, 12, 14, 26, 28, 35, 48, 54, 55, 56, 63, 65, 70, 72, 78, 79, 93, 117, 120, 123, 125, 128, 140, 175, 176, 186, 192, 195, 205, 224, 239, 259, 260, 264, 280, 296, 312, 318, 328, 350, 372, 416, 432, 438, 448, 465, 480, 540, 542, 546, 548, 550, 555, 560, 572, 584, 594, 630, 632, 650, 675
Offset: 1

Views

Author

Keywords

Comments

If k is a term, 10*k is also a term. First few primitive terms are 7, 12, 14, 26, 28, 35, 48, 54, 55, 56, 63, 65, 72, ...
The seven primes up to 2.7*10^8 are 7, 79, 239, 62003, 538987, 35121409, 265371653 (see comments in A333237, example section and Crossrefs).

Examples

			As 1/7 = 0.142857142857142857..., 7 is a term.
As 1/26 = 0.0384615384615384615..., 26 is another term.
		

Crossrefs

Similar with largest digit k: A333402 (k=1), A341383 (k=2), A350814 (k=3), A351470 (k=4), A351471 (k=5), A351472 (k=6), A351473 (k=7), this sequence (k=8), A333237 (k=9).
Cf. A333236.
Decimal expansion of: A020806 (1/7), A021058 (1/54), A021060 (1/56), A021067 (1/63), A021069 (1/65), A021083 (1/79), A021097 (1/93).

Programs

  • Mathematica
    f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[Range@1500000, Max@ f@# == 8 &]
  • PARI
    isok(m) = my(m2=valuation(m, 2), m5=valuation(m, 5)); vecmax(digits(floor(10^(max(m2,m5) + znorder(Mod(10, m/2^m2/5^m5))+1)/m))) == 8; \\ Michel Marcus, Feb 26 2022
    
  • Python
    from itertools import count, islice
    from sympy import multiplicity, n_order
    def A351474_gen(startvalue=1): # generator of terms >= startvalue
        for a in count(max(startvalue,1)):
            m2, m5 = (~a&a-1).bit_length(), multiplicity(5,a)
            k, m = 10**max(m2,m5), 10**n_order(10,a//(1<A351474_list = list(islice(A351474_gen(),20)) # Chai Wah Wu, May 02 2023

Formula

A333236(a(n)) = 8.

A351473 Numbers m such that the largest digit in the decimal expansion of 1/m is 7.

Original entry on oeis.org

27, 36, 37, 44, 132, 135, 148, 234, 270, 288, 292, 297, 308, 315, 360, 364, 369, 370, 404, 407, 440, 468, 576, 616, 636, 657, 707, 728, 756, 808, 864, 1287, 1295, 1313, 1314, 1320, 1332, 1350, 1365, 1375, 1386, 1404, 1408, 1476, 1480, 1485, 1507, 1512, 1752, 1804, 1896
Offset: 1

Views

Author

Keywords

Comments

If k is a term, 10*k is also a term.
First few primitive terms are 27, 36, 37, 44, 132, 135, 148, 234, 288, ...
The unique prime up to 2.6*10^8 is 37 (see comments in A333237 and example).
Subsequence: {132, 1332, 13332, ...} = A073551 \ {2, 12}.

Examples

			As 1/37 = 0.027027027..., 37 is a term.
As 1/148 = 0.00675675675675..., 148 is a term.
		

Crossrefs

Similar with largest digit k: A333402 (k=1), A341383 (k=2), A350814 (k=3), A351470 (k=4), A351471 (k=5), A351472 (k=6), this sequence (k=7), A351474 (k=8), A333237 (k=9).

Programs

  • Mathematica
    f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[Range@1500000, Max@ f@# == 7 &]
  • Python
    from itertools import count, islice
    from sympy import multiplicity, n_order
    def A351473_gen(startvalue=1): # generator of terms >= startvalue
        for a in count(max(startvalue,1)):
            m2, m5 = (~a&a-1).bit_length(), multiplicity(5,a)
            k, m = 10**max(m2,m5), 10**n_order(10,a//(1<A351473_list = list(islice(A351473_gen(),20)) # Chai Wah Wu, May 02 2023
Showing 1-6 of 6 results.