cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A080398 Largest squarefree number dividing sum of divisors of n.

Original entry on oeis.org

1, 3, 2, 7, 6, 6, 2, 15, 13, 6, 6, 14, 14, 6, 6, 31, 6, 39, 10, 42, 2, 6, 6, 30, 31, 42, 10, 14, 30, 6, 2, 21, 6, 6, 6, 91, 38, 30, 14, 30, 42, 6, 22, 42, 78, 6, 6, 62, 57, 93, 6, 14, 6, 30, 6, 30, 10, 30, 30, 42, 62, 6, 26, 127, 42, 6, 34, 42, 6, 6, 6, 195, 74, 114, 62, 70, 6, 42, 10
Offset: 1

Views

Author

Labos Elemer, Mar 19 2003

Keywords

Comments

Not multiplicative, but satisfies a similar condition: For all coprime x, y (with gcd(x,y)=1), a(x*y) = LCM(a(x), a(y)), where LCM is the least common multiply of its arguments, A003990. Compare also with A351560. - Antti Karttunen, Feb 20 2022

Examples

			n=12:sigma[12]=1+2+3+4+6+12=28, sqf-kernel=14=a(12)
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] cor[x_] := Apply[Times, ba[x]] Table[cor[DivisorSigma[1, w]], {w, 1, 100}]
  • PARI
    a(n) = factorback(factor(sigma(n))[,1]); \\ Michel Marcus, Nov 18 2017

Formula

a(n) = A007947(A000203(n)).
a(n) = A019565(A351560(n)). - Antti Karttunen, Feb 20 2022

A353783 a(n) = LCM_{p^e||n} sigma(p^e), where n = Product_{p^e||n}, with each p^e the maximal power of prime p that divides n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 6, 12, 28, 14, 24, 12, 31, 18, 39, 20, 42, 8, 12, 24, 60, 31, 42, 40, 56, 30, 12, 32, 63, 12, 18, 24, 91, 38, 60, 28, 30, 42, 24, 44, 84, 78, 24, 48, 124, 57, 93, 36, 14, 54, 120, 12, 120, 20, 30, 60, 84, 62, 96, 104, 127, 42, 12, 68, 126, 24, 24, 72, 195, 74, 114, 124, 140, 24, 84, 80
Offset: 1

Views

Author

Antti Karttunen, May 08 2022

Keywords

Crossrefs

Cf. also A345044, A345046.
Cf. A336547 (positions where equal to sigma).

Programs

  • Mathematica
    Array[LCM @@ DivisorSigma[1, Power @@@ FactorInteger[#]] &, 79] (* Michael De Vlieger, May 08 2022 *)
  • PARI
    A353783(n) = { my(f=factor(n)~); lcm(vector(#f, i, sigma(f[1, i]^f[2, i]))); };

Formula

a(n) = A000203(n) / A353784(n).
a(n) = A353785(n) * A080398(n).
For all n >= 1, A087207(a(n)) = A351560(n).

A351559 a(n) = A048675(gcd(sigma(n), A019565(n))).

Original entry on oeis.org

0, 2, 1, 0, 1, 2, 1, 0, 0, 2, 3, 8, 9, 2, 3, 0, 1, 2, 1, 0, 1, 2, 3, 0, 0, 10, 1, 8, 5, 2, 1, 0, 1, 2, 3, 32, 1, 6, 1, 0, 9, 2, 1, 8, 33, 2, 3, 0, 0, 2, 3, 0, 1, 6, 3, 0, 1, 2, 3, 8, 1, 2, 33, 0, 1, 2, 65, 0, 1, 2, 3, 0, 1, 2, 1, 12, 1, 10, 5, 0, 16, 2, 3, 0, 1, 18, 7, 0, 1, 2, 9, 8, 1, 2, 7, 0, 1, 2, 35, 0, 65, 2, 33
Offset: 1

Views

Author

Antti Karttunen, Feb 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[If[# == 1, 0, Total[#2*2^PrimePi[#1] & @@@ FactorInteger[#]]/2] &@ GCD[DivisorSigma[1, n], Times @@ Prime@ Flatten@ Position[Reverse@ IntegerDigits[n, 2], 1]], {n, 103}] (* Michael De Vlieger, Feb 20 2022 *)
  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A351559(n) = A048675(gcd(sigma(n), A019565(n)));

Formula

a(n) = A048675(A351557(n)) = A048675(gcd(sigma(n), A019565(n))).
a(n) = n AND A351560(n), where AND is bitwise-and, A004198.
Showing 1-3 of 3 results.