cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A353785 a(n) = A353783(n) / A080398(n).

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 2, 1, 4, 2, 1, 3, 1, 2, 1, 4, 2, 4, 2, 1, 1, 4, 4, 1, 2, 16, 3, 2, 3, 4, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 4, 8, 2, 1, 1, 6, 1, 9, 4, 2, 4, 2, 1, 2, 2, 1, 16, 4, 1, 1, 2, 2, 3, 4, 4, 12, 1, 1, 1, 2, 2, 4, 2, 8, 1, 11, 1, 2, 4, 3, 2, 2, 2, 3, 1, 4, 4, 16, 8, 2, 6, 7, 1, 2, 1, 1, 6, 4, 1, 4
Offset: 1

Views

Author

Antti Karttunen, May 08 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Apply[LCM, DivisorSigma[1, Power @@@ FactorInteger[#]]]/Apply[Times, FactorInteger[DivisorSigma[1, #]][[All, 1]]] &, 105] (* Michael De Vlieger, May 08 2022 *)
  • PARI
    A080398(n) = factorback(factor(sigma(n))[, 1]);
    A353783(n) = { my(f=factor(n)~); lcm(vector(#f, i, sigma(f[1, i]^f[2, i]))); };
    A353785(n) = (A353783(n) / A080398(n));

Formula

a(n) = A353783(n) / A080398(n).

A353783 a(n) = LCM_{p^e||n} sigma(p^e), where n = Product_{p^e||n}, with each p^e the maximal power of prime p that divides n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 6, 12, 28, 14, 24, 12, 31, 18, 39, 20, 42, 8, 12, 24, 60, 31, 42, 40, 56, 30, 12, 32, 63, 12, 18, 24, 91, 38, 60, 28, 30, 42, 24, 44, 84, 78, 24, 48, 124, 57, 93, 36, 14, 54, 120, 12, 120, 20, 30, 60, 84, 62, 96, 104, 127, 42, 12, 68, 126, 24, 24, 72, 195, 74, 114, 124, 140, 24, 84, 80
Offset: 1

Views

Author

Antti Karttunen, May 08 2022

Keywords

Crossrefs

Cf. also A345044, A345046.
Cf. A336547 (positions where equal to sigma).

Programs

  • Mathematica
    Array[LCM @@ DivisorSigma[1, Power @@@ FactorInteger[#]] &, 79] (* Michael De Vlieger, May 08 2022 *)
  • PARI
    A353783(n) = { my(f=factor(n)~); lcm(vector(#f, i, sigma(f[1, i]^f[2, i]))); };

Formula

a(n) = A000203(n) / A353784(n).
a(n) = A353785(n) * A080398(n).
For all n >= 1, A087207(a(n)) = A351560(n).

A351549 Numbers k for which k * gcd(sigma(k), A019565(k)) is equal to sigma(k) * gcd(k, A019565(k)).

Original entry on oeis.org

1, 1456, 15480, 114660, 2244600, 3894768, 25108200, 27052704, 65021040, 112402080, 1973921400
Offset: 1

Views

Author

Antti Karttunen, Feb 19 2022

Keywords

Comments

Numbers k such that their abundancy index [sigma(k)/k] is equal to A351557(k)/A351556(k).
Question: If the above ratio is neither 1 nor 2, must it then be > 2? Are all even terms abundant?
a(12) > 2281701376 if it exists.

Crossrefs

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    isA351549(n) = { my(s=sigma(n), z=A019565(n)); (n*gcd(s,z))==(s*gcd(n,z)); };

A351559 a(n) = A048675(gcd(sigma(n), A019565(n))).

Original entry on oeis.org

0, 2, 1, 0, 1, 2, 1, 0, 0, 2, 3, 8, 9, 2, 3, 0, 1, 2, 1, 0, 1, 2, 3, 0, 0, 10, 1, 8, 5, 2, 1, 0, 1, 2, 3, 32, 1, 6, 1, 0, 9, 2, 1, 8, 33, 2, 3, 0, 0, 2, 3, 0, 1, 6, 3, 0, 1, 2, 3, 8, 1, 2, 33, 0, 1, 2, 65, 0, 1, 2, 3, 0, 1, 2, 1, 12, 1, 10, 5, 0, 16, 2, 3, 0, 1, 18, 7, 0, 1, 2, 9, 8, 1, 2, 7, 0, 1, 2, 35, 0, 65, 2, 33
Offset: 1

Views

Author

Antti Karttunen, Feb 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[If[# == 1, 0, Total[#2*2^PrimePi[#1] & @@@ FactorInteger[#]]/2] &@ GCD[DivisorSigma[1, n], Times @@ Prime@ Flatten@ Position[Reverse@ IntegerDigits[n, 2], 1]], {n, 103}] (* Michael De Vlieger, Feb 20 2022 *)
  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A351559(n) = A048675(gcd(sigma(n), A019565(n)));

Formula

a(n) = A048675(A351557(n)) = A048675(gcd(sigma(n), A019565(n))).
a(n) = n AND A351560(n), where AND is bitwise-and, A004198.

A332208 Numbers k such that the squarefree kernel of sigma(k) is equal to the squarefree kernel of 2*k.

Original entry on oeis.org

6, 28, 120, 135, 270, 496, 672, 891, 1080, 1638, 1782, 3780, 8128, 18600, 20580, 24948, 26208, 30240, 32640, 32760, 35640, 41850, 44226, 55860, 66960, 164640, 167400, 185220, 199584, 200655, 273000, 293760, 307125, 401310, 441936, 446880, 502740, 523776, 544635, 614250, 707616, 802620, 819000, 884520
Offset: 1

Views

Author

Antti Karttunen, Feb 07 2020

Keywords

Comments

Numbers k such that sigma(k) has the same set of distinct prime factors as 2*k.
Numbers k such that A007947(sigma(k)) is equal to A007947(2*k), or equally, that A087207(sigma(k)) is equal to A087207(2*k).
Of the first 256 terms 44 are odd, and none occurs in A228058. Compare also to A331752.

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], SameQ @@ Map[Times @@ FactorInteger[#][[All, 1]] &, {DivisorSigma[1, #], 2 #}] &] (* Michael De Vlieger, Feb 08 2020 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    isA332208(n) = (A007947(sigma(n)) == A007947(2*n));

Formula

{n: A080398(n) == A007947(2n)}.

A351557 a(n) = gcd(sigma(n), A019565(n)).

Original entry on oeis.org

1, 3, 2, 1, 2, 3, 2, 1, 1, 3, 6, 7, 14, 3, 6, 1, 2, 3, 2, 1, 2, 3, 6, 1, 1, 21, 2, 7, 10, 3, 2, 1, 2, 3, 6, 13, 2, 15, 2, 1, 14, 3, 2, 7, 26, 3, 6, 1, 1, 3, 6, 1, 2, 15, 6, 1, 2, 3, 6, 7, 2, 3, 26, 1, 2, 3, 34, 1, 2, 3, 6, 1, 2, 3, 2, 35, 2, 21, 10, 1, 11, 3, 6, 1, 2, 33, 30, 1, 2, 3, 14, 7, 2, 3, 30, 1, 2, 3, 78
Offset: 1

Views

Author

Antti Karttunen, Feb 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[GCD[DivisorSigma[1, n], Times @@ Prime@ Flatten@ Position[Reverse@ IntegerDigits[n, 2], 1]], {n, 99}] (* Michael De Vlieger, Feb 20 2022 *)
  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A351557(n) = gcd(sigma(n), A019565(n));

Formula

a(n) = gcd(A000203(n), A019565(n)) = gcd(A080398(n), A019565(n)).
a(n) = A007947(a(n)).
a(n) = A019565(A351559(n)).

A351560 a(n) is a binary representation of the primes that divide sigma(n) [the sum of divisors of n function], shown in decimal.

Original entry on oeis.org

0, 2, 1, 8, 3, 3, 1, 6, 32, 3, 3, 9, 9, 3, 3, 1024, 3, 34, 5, 11, 1, 3, 3, 7, 1024, 11, 5, 9, 7, 3, 1, 10, 3, 3, 3, 40, 129, 7, 9, 7, 11, 3, 17, 11, 35, 3, 3, 1025, 130, 1026, 3, 9, 3, 7, 3, 7, 5, 7, 7, 11, 1025, 3, 33, 1073741824, 11, 3, 65, 11, 3, 3, 3, 38, 2049, 131, 1025, 13, 3, 11, 5, 1027, 16, 11, 11, 9, 3, 19
Offset: 1

Views

Author

Antti Karttunen, Feb 19 2022

Keywords

Comments

This is not additive sequence, but "oritive": For all coprime x, y (with gcd(x,y)=1), a(x*y) = a(x) OR a(y), where OR is bitwise-or (A003986). Compare also with A080398.

Crossrefs

Programs

  • Mathematica
    {0}~Join~Array[Total[2^(PrimePi[#] - 1) & /@ FactorInteger[DivisorSigma[1, #]][[All, 1]]] &, 85, 2] (* Michael De Vlieger, Feb 20 2022 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]); \\ From A007947
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A351560(n) = A048675(A007947(sigma(n)));

Formula

A387157 a(n) = A173557(sigma(n)), where A173557(n) is multiplicative with a(p^e) = p-1 and sigma is the sum of divisors function.

Original entry on oeis.org

1, 2, 1, 6, 2, 2, 1, 8, 12, 2, 2, 6, 6, 2, 2, 30, 2, 24, 4, 12, 1, 2, 2, 8, 30, 12, 4, 6, 8, 2, 1, 12, 2, 2, 2, 72, 18, 8, 6, 8, 12, 2, 10, 12, 24, 2, 2, 30, 36, 60, 2, 6, 2, 8, 2, 8, 4, 8, 8, 12, 30, 2, 12, 126, 12, 2, 16, 12, 2, 2, 2, 96, 36, 36, 30, 24, 2, 12, 4, 60, 10, 12, 12, 6, 2, 20, 8, 8, 8, 24, 6, 12, 1, 2, 8
Offset: 1

Views

Author

Antti Karttunen, Aug 19 2025

Keywords

Crossrefs

Cf. A000203, A003958, A080398, A173557, A387158 (positions where equal to A173557(n)).
Cf. also A351442.

Programs

  • Mathematica
    A387157[n_] := If[n == 1, 1, Times @@ (FactorInteger[DivisorSigma[1, n]][[All, 1]] - 1)];
    Array[A387157, 100] (* Paolo Xausa, Aug 20 2025 *)
  • PARI
    A387157(n) = factorback(apply(p -> p-1,factor(sigma(n))[,1]));

Formula

a(n) = A003958(A080398(n)).

A355928 Squarefree part of the sum of divisors of n.

Original entry on oeis.org

1, 3, 1, 7, 6, 3, 2, 15, 13, 2, 3, 7, 14, 6, 6, 31, 2, 39, 5, 42, 2, 1, 6, 15, 31, 42, 10, 14, 30, 2, 2, 7, 3, 6, 3, 91, 38, 15, 14, 10, 42, 6, 11, 21, 78, 2, 3, 31, 57, 93, 2, 2, 6, 30, 2, 30, 5, 10, 15, 42, 62, 6, 26, 127, 21, 1, 17, 14, 6, 1, 2, 195, 74, 114, 31, 35, 6, 42, 5, 186, 1, 14, 21, 14, 3, 33, 30, 5, 10
Offset: 1

Views

Author

Antti Karttunen, Jul 24 2022

Keywords

Comments

Not multiplicative.

Crossrefs

Cf. A000203, A007913, A006532 (positions of 1's), A355929.
Cf. also A080398.

Programs

  • PARI
    A355928(n) = core(sigma(n));
    
  • Python
    from sympy.ntheory.factor_ import core, divisor_sigma
    def A355928(n): return core(divisor_sigma(n)) # Chai Wah Wu, Jul 28 2022

Formula

a(n) = A007913(A000203(n)).
a(n) = A355929(n) + A007913(n).

A387156 a(n) = A003557(sigma(n)), where A003557(n) is multiplicative with a(p^e) = p^(e-1), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 4, 1, 1, 3, 2, 2, 1, 4, 4, 1, 3, 1, 2, 1, 16, 6, 4, 2, 1, 1, 4, 4, 1, 12, 16, 3, 8, 9, 8, 1, 1, 2, 4, 3, 1, 16, 2, 2, 1, 12, 8, 2, 1, 1, 12, 7, 9, 4, 12, 4, 8, 3, 2, 4, 1, 16, 4, 1, 2, 24, 2, 3, 16, 24, 12, 1, 1, 1, 2, 2, 16, 4, 8, 1, 11, 3, 2, 16, 18, 2, 4, 6, 3, 3, 8, 4, 64, 24, 4, 6, 7, 3, 2
Offset: 1

Views

Author

Antti Karttunen, Aug 19 2025

Keywords

Crossrefs

Programs

  • Mathematica
    A387156[n_] := # / Times @@ FactorInteger[#][[All, 1]] & [DivisorSigma[1, n]];
    Array[A387156, 100] (* Paolo Xausa, Aug 20 2025 *)
  • PARI
    A387156(n) = { my(s=sigma(n)); s/factorback(factor(s)[,1]); };

Formula

a(n) = A000203(n) / A080398(n).
a(n) = A062401(n) / A387157(n).
Showing 1-10 of 10 results.