cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351600 a(n) = n^2 * Sum_{d^2|n} 1 / d^2.

Original entry on oeis.org

1, 4, 9, 20, 25, 36, 49, 80, 90, 100, 121, 180, 169, 196, 225, 336, 289, 360, 361, 500, 441, 484, 529, 720, 650, 676, 810, 980, 841, 900, 961, 1344, 1089, 1156, 1225, 1800, 1369, 1444, 1521, 2000, 1681, 1764, 1849, 2420, 2250, 2116, 2209, 3024, 2450, 2600, 2601, 3380, 2809
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 14 2022

Keywords

Crossrefs

Sequences of the form n^k * Sum_{d^2|n} 1/d^k for k = 0..10: A046951 (k=0), A340774 (k=1), this sequence (k=2), A351601 (k=3), A351602 (k=4), A351603 (k=5), A351604 (k=6), A351605 (k=7), A351606 (k=8), A351607 (k=9), A351608 (k=10).

Programs

  • Mathematica
    f[p_, e_] := p^2*(p^(2*e) - p^(2*Floor[(e - 1)/2]))/(p^2 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 13 2022 *)
  • PARI
    a(n) = n^2*sumdiv(n, d, if (issquare(d), 1/d)); \\ Michel Marcus, Feb 15 2022

Formula

G.f.: Sum_{k>=1} k^2 * x^(k^2) * (1 + x^(k^2)) / (1 - x^(k^2))^3. - Ilya Gutkovskiy, Feb 21 2022
Multiplicative with a(p^e) = p^2*(p^(2*e) - p^(2*floor((e-1)/2)))/(p^2 - 1). - Sebastian Karlsson, Feb 25 2022
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(4)/3 = Pi^4/270 = 0.360774... . - Amiram Eldar, Nov 13 2022