A351605 a(n) = n^7 * Sum_{d^2|n} 1 / d^7.
1, 128, 2187, 16512, 78125, 279936, 823543, 2113536, 4785156, 10000000, 19487171, 36111744, 62748517, 105413504, 170859375, 270548992, 410338673, 612499968, 893871739, 1290000000, 1801088541, 2494357888, 3404825447, 4622303232, 6103593750, 8031810176, 10465136172
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := p^7*(p^(7*e) - p^(7*Floor[(e - 1)/2]))/(p^7 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 13 2022 *)
-
PARI
a(n) = n^7*sumdiv(n, d, if (issquare(d), 1/sqrtint(d^7))); \\ Michel Marcus, Feb 15 2022
Formula
Multiplicative with a(p^e) = p^7*(p^(7*e) - p^(7*floor((e-1)/2)))/(p^7 - 1). - Sebastian Karlsson, Feb 25 2022
Sum_{k=1..n} a(k) ~ c * n^8, where c = zeta(9)/8 = 0.125251... . - Amiram Eldar, Nov 13 2022