A351641 Triangle read by rows: T(n,k) is the number of length n word structures with all distinct runs using exactly k different symbols.
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 5, 3, 1, 0, 1, 8, 12, 4, 1, 0, 1, 17, 28, 22, 5, 1, 0, 1, 26, 81, 68, 35, 6, 1, 0, 1, 45, 177, 251, 135, 51, 7, 1, 0, 1, 76, 410, 704, 610, 236, 70, 8, 1, 0, 1, 121, 906, 2068, 2086, 1266, 378, 92, 9, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 1, 1; 0, 1, 2, 1; 0, 1, 5, 3, 1; 0, 1, 8, 12, 4, 1; 0, 1, 17, 28, 22, 5, 1; 0, 1, 26, 81, 68, 35, 6, 1; 0, 1, 45, 177, 251, 135, 51, 7, 1; ... The T(4,1) = 1 word is 1111. The T(4,2) = 5 words are 1112, 1121, 1122, 1211, 1222. The T(4,3) = 3 words are 1123, 1223, 1233. The T(4,4) = 1 word is 1234.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
Crossrefs
Programs
-
PARI
\\ here LahI is A111596 as row polynomials. LahI(n, y)={sum(k=1, n, y^k*(-1)^(n-k)*(n!/k!)*binomial(n-1, k-1))} S(n)={my(p=prod(k=1, n, 1 + y*x^k + O(x*x^n))); 1 + sum(i=1, (sqrtint(8*n+1)-1)\2, polcoef(p, i, y)*LahI(i, y))} R(q)={[subst(serlaplace(p), y, 1) | p<-Vec(q)]} T(n)={my(q=S(n), v=concat([1], sum(k=1, n, R(q^k-1)*sum(r=k, n, y^r*binomial(r, k)*(-1)^(r-k)/r!) ))); [Vecrev(p) | p<-v]} { my(A=T(10)); for(n=1, #A, print(A[n])) }
Formula
T(n,k) = A351640(n,k)/k!.
Comments