cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351703 Square array T(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 - x^k * exp(x) / k!).

Original entry on oeis.org

1, 1, 1, 1, 0, 4, 1, 0, 1, 21, 1, 0, 0, 3, 148, 1, 0, 0, 1, 12, 1305, 1, 0, 0, 0, 4, 70, 13806, 1, 0, 0, 0, 1, 10, 465, 170401, 1, 0, 0, 0, 0, 5, 40, 3591, 2403640, 1, 0, 0, 0, 0, 1, 15, 315, 31948, 38143377, 1, 0, 0, 0, 0, 0, 6, 35, 2296, 319068, 672552730
Offset: 0

Views

Author

Seiichi Manyama, Feb 20 2022

Keywords

Examples

			Square array begins:
      1,   1,  1,  1, 1, 1, ...
      1,   0,  0,  0, 0, 0, ...
      4,   1,  0,  0, 0, 0, ...
     21,   3,  1,  0, 0, 0, ...
    148,  12,  4,  1, 0, 0, ...
   1305,  70, 10,  5, 1, 0, ...
  13806, 465, 40, 15, 6, 1, ...
		

Crossrefs

Column k=1..5 gives A006153, A346888, A346889, A346890, A346893.

Programs

  • PARI
    T(n, k) = if(n==0, 1, binomial(n, k)*sum(j=0, n-k, binomial(n-k, j)*T(j, k)));
    
  • PARI
    T(n, k) = n!*sum(j=0, n\k, j^(n-k*j)/(k!^j*(n-k*j)!)); \\ Seiichi Manyama, May 13 2022

Formula

T(0,k) = 1 and T(n,k) = binomial(n,k) * Sum_{j=0..n-k} binomial(n-k,j) * T(j,k) for n > 0.
T(n,k) = n! * Sum_{j=0..floor(n/k)} j^(n-k*j)/(k!^j * (n-k*j)!). - Seiichi Manyama, May 13 2022