cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A351712 Numbers whose minimal (or greedy) Lucas representation (A130310) is palindromic.

Original entry on oeis.org

0, 2, 6, 9, 13, 20, 24, 31, 49, 56, 64, 78, 100, 125, 136, 150, 158, 169, 201, 237, 252, 324, 342, 364, 378, 396, 404, 422, 444, 523, 581, 606, 650, 708, 845, 874, 910, 932, 961, 975, 1004, 1040, 1048, 1077, 1113, 1135, 1164, 1366, 1460, 1500, 1572, 1666, 1692, 1786
Offset: 1

Views

Author

Amiram Eldar, Feb 17 2022

Keywords

Comments

A000211(n) = Lucas(n) + 2 is a term for all n > 2, since the representation of Lucas(n) + 2 is 10...01 with n-1 0's between the two 1's.

Examples

			The first 10 terms are:
   n  a(n) A130310(a(n))
   ---------------------
   1   0               0
   2   2               1
   3   6            1001
   4   9           10001
   5  13          100001
   6  20         1000001
   7  24         1001001
   8  31        10000001
   9  49       100000001
  10  56       100010001
		

Crossrefs

Subsequence of A054770.
Similar sequences: A002113, A006995, A014190, A094202, A331191, A351717.

Programs

  • Mathematica
    lucasPalQ[n_] := Module[{s = {}, m = n, k = 1}, While[m > 0, If[m == 1, k = 1; AppendTo[s, k]; m = 0, If[m == 2, k = 0; AppendTo[s, k]; m = 0, While[LucasL[k] <= m, k++]; k--; AppendTo[s, k]; m -= LucasL[k]; k = 1]]]; PalindromeQ[IntegerDigits[Total[2^s], 2]]]; Select[Range[0, 2000], lucasPalQ]

A352087 Numbers whose minimal (or greedy) tribonacci representation (A278038) is palindromic.

Original entry on oeis.org

0, 1, 3, 5, 8, 14, 18, 23, 25, 36, 40, 45, 52, 62, 71, 78, 82, 102, 110, 128, 148, 150, 163, 181, 198, 211, 229, 233, 246, 264, 275, 312, 326, 360, 397, 411, 426, 463, 477, 505, 529, 562, 593, 617, 650, 658, 682, 715, 746, 770, 781, 805, 838, 869, 893, 926, 928
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2022

Keywords

Comments

A000073(n) + 1 is a term for n>=4, since its minimal tribonacci representation is 10...01 with n-4 0's between the two 1's.

Examples

			The first 10 terms are:
   n  a(n)  A278038(a(n))
  -----------------------
   1   0                0
   2   1                1
   3   3               11
   4   5              101
   5   8             1001
   6  14            10001
   7  18            10101
   8  23            11011
   9  25           100001
  10  36           101101
		

Crossrefs

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; q[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; PalindromeQ[FromDigits @ IntegerDigits[Total[2^(s - 1)], 2]]]; Select[Range[0, 1000], q]

A352105 Numbers whose maximal tribonacci representation (A352103) is palindromic.

Original entry on oeis.org

0, 1, 3, 5, 7, 8, 14, 18, 23, 27, 36, 40, 51, 52, 62, 69, 78, 88, 95, 102, 110, 130, 148, 156, 176, 181, 194, 211, 229, 242, 246, 264, 277, 294, 312, 325, 326, 363, 397, 411, 448, 463, 477, 514, 548, 562, 599, 617, 650, 674, 682, 715, 739, 770, 803, 827, 838, 862
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2022

Keywords

Comments

A027084(n) is a term since its maximal tribonacci representation is n-1 1's and no 0's.
The pairs {A008937(3*k+1)-1, A008937(3*k+1)} = {0, 1}, {7, 8}, {51, 52}, ... are consecutive terms in this sequence: the maximal tribonacci representation of A008937(3*k+1)-1 is 3*k 1's and no 0's (except for k=0 where the representation is 0), and the maximal tribonacci representation of A008937(3*k+1) is of the form 100100...1001 with k blocks of 100 followed by a 1 at the end.

Examples

			The first 10 terms are:
   n  a(n)  A352103(a(n))
  --  ----  -------------
   1    0               0
   2    1               1
   3    3              11
   4    5             101
   5    7             111
   6    8            1001
   7   14            1111
   8   18           10101
   9   23           11011
  10   27           11111
		

Crossrefs

A027084 is a subsequence.

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; trib[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; IntegerDigits[Total[2^(s - 1)], 2]]; q[n_] := Module[{v = trib[n]}, nv = Length[v]; i = 1; While[i <= nv - 3, If[v[[i ;; i + 3]] == {1, 0, 0, 0}, v[[i ;; i + 3]] = {0, 1, 1, 1}; If[i > 3, i -= 4]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, True, PalindromeQ[FromDigits[v[[i[[1, 1]] ;; -1]]]]]]; Select[Range[0, 1000], q]

A352319 Numbers whose minimal (or greedy) Pell representation (A317204) is palindromic.

Original entry on oeis.org

0, 1, 3, 6, 8, 13, 20, 30, 35, 40, 44, 49, 71, 88, 102, 119, 170, 182, 194, 204, 216, 238, 242, 254, 266, 276, 288, 409, 450, 484, 525, 559, 580, 621, 655, 696, 986, 1015, 1044, 1068, 1097, 1150, 1160, 1189, 1218, 1242, 1271, 1334, 1363, 1392, 1396, 1425, 1454
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Comments

A052937(n) = A000129(n+1)+1 is a term for n>0, since its minimal Pell representation is 10...01 with n-1 0's between two 1's.
A048739 is a subsequence since these are repunit numbers in the minimal Pell representation.
A001109 is a subsequence. The minimal Pell representation of A001109(n), for n>1, is 1010...01, with n-1 0's interleaved with n 1's.

Examples

			The first 10 terms are:
   n  a(n)  A317204(a(n))
  --  ----  -------------
   1     0              0
   2     1              1
   3     3             11
   4     6            101
   5     8            111
   6    13           1001
   7    20           1111
   8    30          10001
   9    35          10101
  10    40          10201
		

Crossrefs

Subsequences: A001109, A048739, A052937 \ {2}.

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; q[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; PalindromeQ[IntegerDigits[Total[3^(s - 1)], 3]]]; Select[Range[0, 1500], q]

A352341 Numbers whose maximal Pell representation (A352339) is palindromic.

Original entry on oeis.org

0, 1, 3, 6, 8, 10, 20, 27, 40, 49, 54, 58, 63, 68, 88, 93, 119, 136, 150, 167, 221, 238, 288, 300, 310, 322, 334, 338, 360, 372, 382, 394, 406, 508, 530, 542, 696, 737, 771, 812, 833, 867, 908, 942, 983, 1242, 1276, 1317, 1392, 1681, 1710, 1734, 1763, 1792, 1802
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Comments

A000129(n) - 2 is a term for n > 1. The maximal Pell representations of these numbers are 0, 11, 121, 1221, 12221, ... (0 and A132583).
A048739 is a subsequence since these are the repunit numbers in the maximal Pell representation.
A065113 is a subsequence since the maximal Pell representation of A065113(n) is 2*n 2's.

Examples

			The first 10 terms are:
   n  a(n)  A352339(a(n))
  --  ----  -------------
   1    0               0
   2    1               1
   3    3              11
   4    6              22
   5    8             111
   6   10             121
   7   20            1111
   8   27            1221
   9   40            2222
  10   49           11111
		

Crossrefs

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellp[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; IntegerDigits[Total[3^(s - 1)], 3]]; lazy[n_] := Module[{v = pellp[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] > 0 && v[[i + 1]] == 0 && v[[i + 2]] < 2, v[[i ;; i + 2]] += {-1, 2, 1}; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, FromDigits[v[[i[[1, 1]] ;; -1]]]]]; Select[Range[0, 2000], PalindromeQ[lazy[#]] &]

A351718 Numbers whose binary and maximal Lucas representations are both palindromic.

Original entry on oeis.org

0, 3, 5, 17, 85, 107, 219, 1161, 1365, 1619, 2047, 4097, 6141, 19801, 25027, 68961, 91213, 134337, 1540157, 1804859, 11877549, 37696497, 44092437, 142710801, 548269377, 3387848595, 4073444175, 8226780335, 31029923047, 64662095631, 67947722943, 126590440407, 2145176968607
Offset: 1

Views

Author

Amiram Eldar, Feb 17 2022

Keywords

Examples

			The first 10 terms are:
   n   a(n)  A007088(a(n))    A130311(a(n))
   ----------------------------------------
   1     0               0                0
   2     3              11               11
   3     5             101              101
   4    17           10001            11111
   5    85         1010101        101101101
   6   107         1101011        111010111
   7   219        11011011      10110101101
   8  1161     10010001001   11011111111011
   9  1365     10101010101  101010101010101
  10  1619     11001010011  101111010111101
		

Crossrefs

Intersection of A006995 and A351717.

Programs

  • Mathematica
    lazy = Select[IntegerDigits[Range[10^6], 2], SequenceCount[#, {0, 0}] == 0 &]; t = Total[# * Reverse @ LucasL[Range[0, Length[#] - 1]]] & /@ lazy; s = FromDigits /@ lazy[[TakeWhile[Flatten[FirstPosition[t, #] & /@ Range[Max[t]]], NumberQ]]]; Join[{0}, Select[Position[s, _?PalindromeQ] // Flatten, PalindromeQ[IntegerDigits[#, 2]] &]]

A352507 Number whose representation in the base of Catalan numbers (A014418) is palindromic.

Original entry on oeis.org

0, 1, 3, 6, 8, 15, 22, 43, 48, 53, 59, 64, 69, 133, 152, 171, 177, 196, 215, 430, 444, 458, 477, 491, 505, 524, 538, 552, 564, 578, 592, 611, 625, 639, 658, 672, 686, 1431, 1487, 1543, 1568, 1624, 1680, 1705, 1761, 1817, 1862, 1918, 1974, 1999, 2055, 2111, 2136
Offset: 1

Views

Author

Amiram Eldar, Mar 19 2022

Keywords

Comments

The partial sums of the Catalan numbers with positive index (A014138) are terms, since the representation of A014138(n) is n 1's.

Examples

			The first 10 terms are:
   n  a(n)  A014418(a(n))
  --  ----  -------------
   1     0              0
   2     1              1
   3     3             11
   4     6            101
   5     8            111
   6    15           1001
   7    22           1111
   8    43          10001
   9    48          10101
  10    53          10201
		

Crossrefs

Subsequences: A014138, A141351 \ {2}.

Programs

  • Mathematica
    c[n_] := c[n] = CatalanNumber[n]; q[n_] := Module[{s = {}, m = n, i}, While[m > 0, i = 1; While[c[i] <= m, i++]; i--; m -= c[i]; AppendTo[s, i]]; PalindromeQ @ IntegerDigits[Total[4^(s - 1)], 4]]; Select[Range[0, 2000], q]

A364005 Numbers whose Wythoff representation (A189921, A317208) is palindromic.

Original entry on oeis.org

0, 1, 2, 5, 7, 10, 13, 15, 23, 28, 34, 36, 52, 57, 65, 75, 81, 89, 91, 117, 128, 146, 159, 175, 185, 198, 204, 217, 233, 235, 277, 295, 327, 369, 379, 400, 426, 442, 463, 473, 494, 520, 526, 547, 573, 589, 610, 612, 680, 709, 761, 829, 848, 916, 945, 989, 1023
Offset: 1

Views

Author

Amiram Eldar, Jul 01 2023

Keywords

Comments

Includes all the odd-indexed Fibonacci numbers (A001519), since the Wythoff representation of Fibonacci(1) is 1 and the Wythoff representation of Fibonacci(2*n+1), for n >= 1, is n 0's.
A157725(n) = Fibonacci(n) + 2 is a term for n >= 4, since its Wythoff representation is n-4 1's between 2 0's.
A232970 is a subsequence since the Wythoff representation of A232970(n) = (Fibonacci(3*n+1) + 1)/2 is n 0's and n-1 1's interleaved.

Examples

			The first 10 terms are:
   n  a(n)  A317208(a(n))
  --  ----  -------------
   1     0              0
   2     1              1
   3     2              2
   4     5             22
   5     7            212
   6    10           2112
   7    13            222
   8    15          21112
   9    23         211112
  10    28          21212
		

Crossrefs

Programs

  • Mathematica
    z[n_] := Floor[(n + 1)*GoldenRatio] - n - 1; h[n_] := z[n] - z[n - 1]; w[n_] := Module[{m = n, zm = 0, hm, s = {}}, While[zm != 1, hm = h[m]; AppendTo[s, hm]; If[hm == 1, zm = z[m], zm = z[z[m]]]; m = zm]; s]; w[0] = {0}; Select[Range[0, 1000], PalindromeQ[w[#]] &]

A364214 Numbers whose canonical representation as a sum of distinct Jacobsthal numbers (A280049) is palindromic.

Original entry on oeis.org

1, 2, 4, 5, 6, 10, 12, 15, 18, 21, 22, 30, 34, 42, 44, 49, 58, 63, 66, 71, 80, 85, 86, 102, 110, 126, 130, 146, 154, 170, 172, 183, 198, 209, 218, 229, 244, 255, 258, 269, 284, 295, 304, 315, 330, 341, 342, 374, 390, 422, 430, 462, 478, 510, 514, 546, 562, 594
Offset: 1

Views

Author

Amiram Eldar, Jul 14 2023

Keywords

Comments

The even-indexed Jacobsthal numbers A001045(2*n) = A002450(n) = (4^n-1)/3, for n >= 1, are terms since their representation is 2*n-1 1's.
A001045(2*n+1) - 1 = A020988(n) = (2/3)*(4^n-1) is a term for n >= 1, since its representation is 2*n 1's.
A001045(n) + 1 = A128209(n) is a term for n >= 0, since its representation for n = 0 is 1 and its representation for n >= 1 is n-1 0's between 2 1's.
A160156(n) is a term for n >= 0 since its representation is n 0's interleaved with n+1 1's.

Examples

			The first 10 terms are:
   n  a(n)  A280049(a(n))
  --  ----  -------------
   1     1              1
   2     2             11
   3     4            101
   4     5            111
   5     6           1001
   6    10           1111
   7    12          10001
   8    15          10101
   9    18          11011
  10    21          11111
		

Crossrefs

Programs

  • Mathematica
    Position[Select[Range[1000], EvenQ[IntegerExponent[#, 2]] &], _?(PalindromeQ[IntegerDigits[#, 2]] &)] // Flatten
  • PARI
    s(n) = if(n < 2, n > 0, n = s(n-1); until(valuation(n, 2)%2 == 0, n++); n); \\ A003159
    is(n) = {my(d = binary(s(n))); d == Vecrev(d);}

A354884 Numbers whose skew binary representation (A169683) is palindromic.

Original entry on oeis.org

0, 1, 2, 4, 8, 11, 16, 26, 32, 39, 50, 57, 64, 86, 98, 120, 128, 143, 166, 181, 194, 209, 232, 247, 256, 302, 326, 372, 386, 432, 456, 502, 512, 543, 590, 621, 646, 677, 724, 755, 770, 801, 848, 879, 904, 935, 982, 1013, 1024, 1118, 1166, 1260, 1286, 1380, 1428
Offset: 1

Views

Author

Amiram Eldar, Jun 10 2022

Keywords

Comments

The sequence of powers of 2 (A000079) is a subsequence since A169683(1) = 1, A169683(2) = 2, and for n > 2 A169683(2^n) = 10..01 with n-1 0's between the two 1's.
A000295 is a subsequence since A169683(A000295(0)) = A169683(A000295(1)) = 0 and for n>1 A169683(A000295(n)) is a repunit with n-1 1's.
A144414 is a subsequence since A169683(A144414(1)) = 1 and for n>1 A169683(A144414(n)) = 1010..01 with n-1 0's interleaved with n 1's.

Examples

			The first 10 terms are:
   n  a(n)  A169683(a(n))
  --  ----  -------------
   1    0               0
   2    1               1
   3    2               2
   4    4              11
   5    8             101
   6   11             111
   7   16            1001
   8   26            1111
   9   32           10001
  10   39           10101
		

Crossrefs

Programs

  • Mathematica
    f[0] = 0; f[n_] := Module[{m = Floor@Log2[n + 1], d = n, pos}, Reap[While[m > 0, pos = 2^m - 1; Sow@Floor[d/pos]; d = Mod[d, pos]; --m;]][[2, 1]] // FromDigits]; Select[Range[0, 15000], PalindromeQ[f[#]] &] (* after N. J. A. Sloane at A169683 *)
Showing 1-10 of 12 results. Next