cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A351823 Triangular array read by rows. T(n,k) is the number of sets of lists (as in A000262(n)) with exactly k size 2 lists, n >= 0, 0 <= k <= floor(n/2).

Original entry on oeis.org

1, 1, 1, 2, 7, 6, 49, 12, 12, 301, 140, 60, 2281, 1470, 180, 120, 21211, 12642, 2940, 840, 220417, 127736, 41160, 3360, 1680, 2528569, 1527192, 455112, 70560, 15120, 32014801, 19837530, 5748120, 1234800, 75600, 30240, 442974511, 278142590, 83995560, 16687440, 1940400, 332640
Offset: 0

Views

Author

Geoffrey Critzer, Feb 20 2022

Keywords

Comments

From the asymptotic estimate of A000262(n) provided by Vaclav Kotesovec we deduce that in the limit as n gets big the average number of size 2 lists is equal to 1. In other words, lim_{n->oo} Sum_{k>=1} T(n,k)*k/A000262(n) = 1. Generally for any j >= 1, the average number of size j lists equals 1 in the limit as n -> oo.

Examples

			Triangle T(n,k) begins:
      1;
      1;
      1,     2;
      7,     6;
     49,    12,   12;
    301,   140,   60;
   2281,  1470,  180, 120;
  21211, 12642, 2940, 840;
  ...
		

Crossrefs

Column k=1 gives A113235.
T(n,floor(n/2)) gives A081125.
T(2n,n) gives A001813.
Cf. A000262 (row sums) A006152, A114329, A351825.

Programs

  • Maple
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(j!*
         `if`(j=2, x, 1)*b(n-j)*binomial(n-1, j-1), j=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Feb 20 2022
  • Mathematica
    nn = 7; Map[Select[#, # > 0 &] &,Range[0, nn]! CoefficientList[Series[Exp[ x/(1 - x) - x ^2 + y x^2], {x, 0, nn}], {x, y}]] // Grid

Formula

E.g.f.: exp(x/(1-x) - x^2 + y*x^2).
Sum_{k=0..floor(n/2)} k * T(n,k) = A351825(n). - Alois P. Heinz, Feb 24 2022
Showing 1-1 of 1 results.