A351823 Triangular array read by rows. T(n,k) is the number of sets of lists (as in A000262(n)) with exactly k size 2 lists, n >= 0, 0 <= k <= floor(n/2).
1, 1, 1, 2, 7, 6, 49, 12, 12, 301, 140, 60, 2281, 1470, 180, 120, 21211, 12642, 2940, 840, 220417, 127736, 41160, 3360, 1680, 2528569, 1527192, 455112, 70560, 15120, 32014801, 19837530, 5748120, 1234800, 75600, 30240, 442974511, 278142590, 83995560, 16687440, 1940400, 332640
Offset: 0
Examples
Triangle T(n,k) begins: 1; 1; 1, 2; 7, 6; 49, 12, 12; 301, 140, 60; 2281, 1470, 180, 120; 21211, 12642, 2940, 840; ...
Crossrefs
Programs
-
Maple
b:= proc(n) option remember; expand(`if`(n=0, 1, add(j!* `if`(j=2, x, 1)*b(n-j)*binomial(n-1, j-1), j=1..n))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)): seq(T(n), n=0..12); # Alois P. Heinz, Feb 20 2022
-
Mathematica
nn = 7; Map[Select[#, # > 0 &] &,Range[0, nn]! CoefficientList[Series[Exp[ x/(1 - x) - x ^2 + y x^2], {x, 0, nn}], {x, y}]] // Grid
Formula
E.g.f.: exp(x/(1-x) - x^2 + y*x^2).
Sum_{k=0..floor(n/2)} k * T(n,k) = A351825(n). - Alois P. Heinz, Feb 24 2022
Comments