cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351842 Numbers whose sum of digits and number of proper divisors are equal.

Original entry on oeis.org

21, 32, 50, 70, 111, 162, 168, 201, 212, 232, 250, 308, 322, 380, 384, 405, 416, 430, 456, 546, 610, 650, 690, 740, 744, 812, 832, 870, 980, 1004, 1011, 1015, 1053, 1101, 1105, 1222, 1316, 1352, 1365, 1460, 1464, 1482, 1510, 1518, 1550, 1554, 1590, 1608, 1752
Offset: 1

Views

Author

Zdenek Cervenka, Feb 21 2022

Keywords

Examples

			21 is a term since its digits sum to 2 + 1 = 3 and it has three proper divisors (1, 3, and 7).
		

Crossrefs

Programs

  • Maple
    S := n -> add(convert(n, base, 10)):
    PD := n -> nops(NumberTheory[Divisors](n)) - 1:
    a := n -> select(x -> S(x) = PD(x), [seq(1..n)])
  • Mathematica
    Select[Range[1, 1700], Total[IntegerDigits[#]] == Length[Divisors[#]] - 1 &]
  • PARI
    isok(m) = sumdigits(m) == numdiv(m) - 1; \\ Michel Marcus, Feb 21 2022
    
  • PARI
    list(nn) = forcomposite(n=1, nn, if (sumdigits(n) == (numdiv(n) - 1), print1(n, ", ")));
    list(1700);
  • Python
    from sympy import divisor_count
    def ok(n): return sum(map(int, str(n))) == divisor_count(n) - 1
    print([k for k in range(1753) if ok(k)]) # Michael S. Branicky, Feb 21 2022