cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A293140 E.g.f.: Product_{m>0} (1-x^m).

Original entry on oeis.org

1, -1, -2, 0, 0, 120, 0, 5040, 0, 0, 0, 0, -479001600, 0, 0, -1307674368000, 0, 0, 0, 0, 0, 0, 1124000727777607680000, 0, 0, 0, 403291461126605635584000000, 0, 0, 0, 0, 0, 0, 0, 0, -10333147966386144929666651337523200000000, 0, 0, 0, 0
Offset: 0

Views

Author

Seiichi Manyama, Oct 01 2017

Keywords

Crossrefs

Column k=1 of A293139.

Formula

a(n) = n! * A010815(n).
a(n) = Sum_{k=0..A003056(n)} (-1)^k * A351884(n,k). - Alois P. Heinz, Feb 23 2022

A386474 Number of sets of lists of [n] such that no list is longer than than the total number of lists.

Original entry on oeis.org

1, 1, 1, 7, 25, 141, 1171, 9913, 85233, 907273, 11010691, 143824341, 1988010553, 29605763773, 475664908083, 8284952367721, 153508912353121, 2997209814190353, 61485486404453443, 1326994255131585373, 30144049509450774441, 718905298680190094341, 17940822818538396541843
Offset: 0

Views

Author

John Tyler Rascoe, Jul 23 2025

Keywords

Comments

Here sets of lists are set partitions of [n] such that the elements within each block are ordered but the blocks themselves are unordered.

Examples

			a(3) = 7 counts: {(1),(2),(3)}, {(1),(2,3)}, {(1),(3,2)}, {(1,2),(3)}, {(1,3),(2)}, {(2),(3,1)}, {(2,1),(3)}.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m, l) option remember; `if`(m>n+l, 0, `if`(n=0, 1,
          add(b(n-j, max(m, j), l+1)*(n-1)!*j/(n-j)!, j=1..n)))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..22);  # Alois P. Heinz, Jul 23 2025
  • Mathematica
    With[{m = 22}, CoefficientList[1 + Series[Sum[((x - x^(i + 1))/(1 - x))^i/i!, {i, 1, m}], {x, 0, m}], x] * Range[0, m]!] (* Amiram Eldar, Jul 24 2025 *)
  • PARI
    R_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(sum(i=0,N,((x-x^(i+1))/(1-x))^i/i!)))}

Formula

E.g.f.: Sum_{i>=0} ((x - x^(i+1))/(1 - x))^i / i!.

A386497 Number of sets of lists of [n] such that one list is the largest.

Original entry on oeis.org

1, 1, 2, 12, 60, 440, 3390, 33852, 338072, 4116240, 51776730, 736751180, 11075784852, 183142075272, 3157190863190, 59336602681020, 1164223828582320, 24348331444705952, 533422896546272562, 12365952739192923660, 298208300418298756460, 7570420981014167756760
Offset: 0

Views

Author

John Tyler Rascoe, Jul 23 2025

Keywords

Comments

Here sets of lists are set partitions of [n] such that the elements within each block are ordered but the blocks themselves are unordered.

Examples

			a(3) = 12 counts: {(1),(2,3)}, {(1),(3,2)}, {(1,2),(3)}, {(1,3),(2)}, {(2),(3,1)}, {(2,1),(3)}, {(1,2,3)}, {(1,3,2)}, {(2,1,3)}, {(2,3,1)}, {(3,1,2)}, {(3,2,1)}.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m, t) option remember; `if`(n=0, t, add(b(n-j, max(m, j),
          `if`(j>m, 1, `if`(j=m, 0, t)))*(n-1)!*j/(n-j)!, j=1..n))
        end:
    a:= n-> b(n, 0, 1):
    seq(a(n), n=0..21);  # Alois P. Heinz, Jul 23 2025
  • Mathematica
    With[{m = 21}, CoefficientList[Series[1 + Sum[x^j*Exp[(x - x^j)/(1 - x)], {j, 1, m}], {x, 0, m}], x] * Range[0, m]!] (* Amiram Eldar, Jul 24 2025 *)
  • PARI
    B_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(1+sum(j=1,N, x^j*exp((x-x^j)/(1-x)))))}

Formula

E.g.f.: 1 + Sum_{j>0} x^j * exp((x - x^j)/(1 - x)).
Showing 1-3 of 3 results.