A293140
E.g.f.: Product_{m>0} (1-x^m).
Original entry on oeis.org
1, -1, -2, 0, 0, 120, 0, 5040, 0, 0, 0, 0, -479001600, 0, 0, -1307674368000, 0, 0, 0, 0, 0, 0, 1124000727777607680000, 0, 0, 0, 403291461126605635584000000, 0, 0, 0, 0, 0, 0, 0, 0, -10333147966386144929666651337523200000000, 0, 0, 0, 0
Offset: 0
A386474
Number of sets of lists of [n] such that no list is longer than than the total number of lists.
Original entry on oeis.org
1, 1, 1, 7, 25, 141, 1171, 9913, 85233, 907273, 11010691, 143824341, 1988010553, 29605763773, 475664908083, 8284952367721, 153508912353121, 2997209814190353, 61485486404453443, 1326994255131585373, 30144049509450774441, 718905298680190094341, 17940822818538396541843
Offset: 0
a(3) = 7 counts: {(1),(2),(3)}, {(1),(2,3)}, {(1),(3,2)}, {(1,2),(3)}, {(1,3),(2)}, {(2),(3,1)}, {(2,1),(3)}.
-
b:= proc(n, m, l) option remember; `if`(m>n+l, 0, `if`(n=0, 1,
add(b(n-j, max(m, j), l+1)*(n-1)!*j/(n-j)!, j=1..n)))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..22); # Alois P. Heinz, Jul 23 2025
-
With[{m = 22}, CoefficientList[1 + Series[Sum[((x - x^(i + 1))/(1 - x))^i/i!, {i, 1, m}], {x, 0, m}], x] * Range[0, m]!] (* Amiram Eldar, Jul 24 2025 *)
-
R_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(sum(i=0,N,((x-x^(i+1))/(1-x))^i/i!)))}
A386497
Number of sets of lists of [n] such that one list is the largest.
Original entry on oeis.org
1, 1, 2, 12, 60, 440, 3390, 33852, 338072, 4116240, 51776730, 736751180, 11075784852, 183142075272, 3157190863190, 59336602681020, 1164223828582320, 24348331444705952, 533422896546272562, 12365952739192923660, 298208300418298756460, 7570420981014167756760
Offset: 0
a(3) = 12 counts: {(1),(2,3)}, {(1),(3,2)}, {(1,2),(3)}, {(1,3),(2)}, {(2),(3,1)}, {(2,1),(3)}, {(1,2,3)}, {(1,3,2)}, {(2,1,3)}, {(2,3,1)}, {(3,1,2)}, {(3,2,1)}.
-
b:= proc(n, m, t) option remember; `if`(n=0, t, add(b(n-j, max(m, j),
`if`(j>m, 1, `if`(j=m, 0, t)))*(n-1)!*j/(n-j)!, j=1..n))
end:
a:= n-> b(n, 0, 1):
seq(a(n), n=0..21); # Alois P. Heinz, Jul 23 2025
-
With[{m = 21}, CoefficientList[Series[1 + Sum[x^j*Exp[(x - x^j)/(1 - x)], {j, 1, m}], {x, 0, m}], x] * Range[0, m]!] (* Amiram Eldar, Jul 24 2025 *)
-
B_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(1+sum(j=1,N, x^j*exp((x-x^j)/(1-x)))))}
Showing 1-3 of 3 results.
Comments