cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A227242 Decimal expansion of (e^gamma - 1)/e^gamma.

Original entry on oeis.org

4, 3, 8, 5, 4, 0, 5, 1, 6, 4, 3, 3, 1, 1, 4, 8, 3, 0, 1, 7, 5, 8, 5, 6, 7, 8, 5, 2, 0, 9, 1, 1, 9, 2, 1, 3, 2, 3, 4, 2, 8, 9, 6, 1, 3, 0, 7, 4, 8, 4, 6, 8, 3, 1, 8, 4, 5, 8, 4, 0, 9, 2, 3, 9, 5, 4, 9, 1, 2, 0, 3, 2, 9, 2, 5, 7, 1, 4, 3, 6, 2, 8, 6, 7, 1, 2, 8, 8, 4, 1, 0, 6, 5, 7, 8, 5, 6, 4, 1, 2, 3, 2, 6, 8, 0
Offset: 0

Views

Author

Arkadiusz Wesolowski, Oct 19 2013

Keywords

Comments

The value is equal to lim_{n->oo} (Sum_{d|n#, d>n} 1/phi(d))/(Sum_{d|n#} 1/phi(d)).

Examples

			(exp(gamma) - 1)/exp(gamma) = 0.438540516433114830175856785....
		

Crossrefs

Programs

  • Magma
    E:=EulerGamma(RealField(105)); Reverse(Intseq(Floor(10^105*(Exp(E)-1)/Exp(E))));
    
  • Maple
    evalf(1-exp(-gamma), 120);  # Alois P. Heinz, Feb 24 2022
  • Mathematica
    RealDigits[(E^EulerGamma - 1)/E^EulerGamma, 10, 50][[1]] (* G. C. Greubel, Oct 02 2017 *)
  • PARI
    default(realprecision, 105); x=10*(exp(Euler)-1)/exp(Euler); for(n=1, 105, d=floor(x); x=(x-d)*10; print1(d, ", "));

Formula

From Alois P. Heinz, Feb 24 2022: (Start)
Equals 1 - exp(-gamma) = 1 - A080130.
Equals lim_{n->oo} A351901(n)/A000142(n). (End)
Showing 1-1 of 1 results.