A351927 Smallest positive integer k such that 2^k has no '0' in the last n digits of its ternary expansion.
1, 2, 4, 10, 15, 15, 15, 15, 15, 15, 50, 50, 101, 101, 101, 101, 143, 143, 143, 143, 143, 143, 143, 143, 143, 1916, 1916, 1916, 1916, 1916, 1916, 82286, 1134022, 1639828, 3483159, 3483159, 3483159, 3917963, 3917963, 3917963, 4729774, 4729774, 9827775, 9827775, 43622201, 43622201, 43622201
Offset: 1
Links
- Robert I. Saye, On two conjectures concerning the ternary digits of powers of two, arXiv:2202.13256 [math.NT], 2022.
Programs
-
Mathematica
smallest[n_] := Module[{k}, k = Max[1, Ceiling[(n - 1) Log[2, 3]]]; While[MemberQ[Take[IntegerDigits[2^k, 3], -n], 0], ++k]; k]; Table[smallest[n], {n, 1, 20}]
-
PARI
a(n) = my(k=1); while(!vecmin(Vec(Vecrev(digits(2^k,3)), n)), k++); k; \\ Michel Marcus, Feb 26 2022
-
Python
from sympy.ntheory.digits import digits def a(n, startk=1): k = max(startk, len(bin(3**(n-1))[2:])) pow2 = 2**k while 0 in digits(pow2, 3)[-n:]: k += 1 pow2 *= 2 return k an = 0 for n in range(1, 32): an = a(n, an) print(an, end=", ") # Michael S. Branicky, Mar 10 2022
-
Python
from itertools import count def A351927(n): kmax, m = 3**n, (3**(n-1)).bit_length() k2 = pow(2,m,kmax) for k in count(m): a = k2 if 3*a >= kmax: while a > 0: a, b = divmod(a,3) if b == 0: break else: return k k2 = 2*k2 % kmax # Chai Wah Wu, Mar 19 2022
Comments