A352032 Sum of the 4th powers of the odd proper divisors of n.
0, 1, 1, 1, 1, 82, 1, 1, 82, 626, 1, 82, 1, 2402, 707, 1, 1, 6643, 1, 626, 2483, 14642, 1, 82, 626, 28562, 6643, 2402, 1, 51332, 1, 1, 14723, 83522, 3027, 6643, 1, 130322, 28643, 626, 1, 196964, 1, 14642, 57893, 279842, 1, 82, 2402, 391251, 83603, 28562, 1, 538084, 15267
Offset: 1
Examples
a(10) = 626; a(10) = Sum_{d|10, d<10, d odd} d^4 = 1^4 + 5^4 = 626.
Links
Crossrefs
Programs
-
Mathematica
f[2, e_] := 1; f[p_, e_] := (p^(4*e+4) - 1)/(p^4 - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n^4, 0]; Array[a, 60] (* Amiram Eldar, Oct 11 2023 *)
Formula
a(n) = Sum_{d|n, d
G.f.: Sum_{k>=1} (2*k-1)^4 * x^(4*k-2) / (1 - x^(2*k-1)). - Ilya Gutkovskiy, Mar 02 2022
From Amiram Eldar, Oct 11 2023: (Start)
Sum_{k=1..n} a(k) ~ c * n^5, where c = (zeta(5)-1)/10 = 0.0036927755... . (End)