A352035 Sum of the 7th powers of the odd proper divisors of n.
0, 1, 1, 1, 1, 2188, 1, 1, 2188, 78126, 1, 2188, 1, 823544, 80313, 1, 1, 4785157, 1, 78126, 825731, 19487172, 1, 2188, 78126, 62748518, 4785157, 823544, 1, 170939688, 1, 1, 19489359, 410338674, 901669, 4785157, 1, 893871740, 62750705, 78126, 1, 1801914272, 1
Offset: 1
Examples
a(10) = 78126; a(10) = Sum_{d|10, d<10, d odd} d^7 = 1^7 + 5^7 = 78126.
Links
Crossrefs
Programs
-
Mathematica
f[2, e_] := 1; f[p_, e_] := (p^(7*e+7) - 1)/(p^7 - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n^7, 0]; Array[a, 60] (* Amiram Eldar, Oct 11 2023 *)
Formula
a(n) = Sum_{d|n, d
G.f.: Sum_{k>=1} (2*k-1)^7 * x^(4*k-2) / (1 - x^(2*k-1)). - Ilya Gutkovskiy, Mar 02 2022
From Amiram Eldar, Oct 11 2023: (Start)
Sum_{k=1..n} a(k) ~ c * n^8, where c = (zeta(8)-1)/16 = 0.0002548347... . (End)