A352037 Sum of the 9th powers of the odd proper divisors of n.
0, 1, 1, 1, 1, 19684, 1, 1, 19684, 1953126, 1, 19684, 1, 40353608, 1972809, 1, 1, 387440173, 1, 1953126, 40373291, 2357947692, 1, 19684, 1953126, 10604499374, 387440173, 40353608, 1, 38445332184, 1, 1, 2357967375, 118587876498, 42306733, 387440173, 1, 322687697780
Offset: 1
Examples
a(10) = 1953126; a(10) = Sum_{d|10, d<10, d odd} d^9 = 1^9 + 5^9 = 1953126.
Links
Crossrefs
Programs
-
Mathematica
f[2, e_] := 1; f[p_, e_] := (p^(9*e+9) - 1)/(p^9 - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n^9, 0]; Array[a, 60] (* Amiram Eldar, Oct 11 2023 *)
Formula
a(n) = Sum_{d|n, d
G.f.: Sum_{k>=1} (2*k-1)^9 * x^(4*k-2) / (1 - x^(2*k-1)). - Ilya Gutkovskiy, Mar 02 2022
From Amiram Eldar, Oct 11 2023: (Start)
Sum_{k=1..n} a(k) ~ c * n^10, where c = (zeta(10)-1)/20 = 0.0000497287... . (End)