cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352038 Sum of the 10th powers of the odd proper divisors of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 59050, 1, 1, 59050, 9765626, 1, 59050, 1, 282475250, 9824675, 1, 1, 3486843451, 1, 9765626, 282534299, 25937424602, 1, 59050, 9765626, 137858491850, 3486843451, 282475250, 1, 576660215300, 1, 1, 25937483651, 2015993900450, 292240875, 3486843451
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 01 2022

Keywords

Examples

			a(10) = 9765626; a(10) = Sum_{d|10, d<10, d odd} d^10 = 1^10 + 5^10 = 9765626.
		

Crossrefs

Sum of the k-th powers of the odd proper divisors of n for k=0..10: A091954 (k=0), A091570 (k=1), A351647 (k=2), A352031 (k=3), A352032 (k=4), A352033 (k=5), A352034 (k=6), A352035 (k=7), A352036 (k=8), A352037 (k=9), this sequence (k=10).

Programs

  • Mathematica
    f[2, e_] := 1; f[p_, e_] := (p^(10*e+10) - 1)/(p^10 - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n^10, 0]; Array[a, 60] (* Amiram Eldar, Oct 11 2023 *)
  • Python
    from math import prod
    from sympy import factorint
    def A352038(n): return prod((p**(10*(e+1))-1)//(p**10-1) for p, e in factorint(n).items() if p > 2) - (n**10 if n % 2 else 0) # Chai Wah Wu, Mar 01 2022

Formula

a(n) = Sum_{d|n, d
G.f.: Sum_{k>=1} (2*k-1)^10 * x^(4*k-2) / (1 - x^(2*k-1)). - Ilya Gutkovskiy, Mar 02 2022
From Amiram Eldar, Oct 11 2023: (Start)
a(n) = A321814(n) - n^10*A000035(n).
Sum_{k=1..n} a(k) ~ c * n^11, where c = (zeta(11)-1)/22 = 0.0000224631... . (End)