cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352050 Sum of the 4th powers of the divisor complements of the odd proper divisors of n.

Original entry on oeis.org

0, 16, 81, 256, 625, 1312, 2401, 4096, 6642, 10016, 14641, 20992, 28561, 38432, 51331, 65536, 83521, 106288, 130321, 160256, 196963, 234272, 279841, 335872, 391250, 456992, 538083, 614912, 707281, 821312, 923521, 1048576, 1200643, 1336352, 1503651, 1700608, 1874161
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 01 2022

Keywords

Examples

			a(10) = 10^4 * Sum_{d|10, d<10, d odd} 1 / d^4 = 10^4 * (1/1^4 + 1/5^4) = 10016.
		

Crossrefs

Sum of the k-th powers of the divisor complements of the odd proper divisors of n for k=0..10: A091954 (k=0), A352047 (k=1), A352048 (k=2), A352049 (k=3), this sequence (k=4), A352051 (k=5), A352052 (k=6), A352053 (k=7), A352054 (k=8), A352055 (k=9), A352056 (k=10).

Programs

  • Maple
    f:= proc(n) local m,d;
          m:= n/2^padic:-ordp(n,2);
          add((n/d)^4, d = select(`<`,numtheory:-divisors(m),n))
    end proc:map(f, [$1..40]); # Robert Israel, Apr 03 2023
  • Mathematica
    A352050[n_]:=DivisorSum[n,1/#^4&,#A352050,50] (* Paolo Xausa, Aug 09 2023 *)
    a[n_] := DivisorSigma[-4, n/2^IntegerExponent[n, 2]] * n^4 - Mod[n, 2]; Array[a, 100] (* Amiram Eldar, Oct 13 2023 *)
  • PARI
    a(n) = n^4 * sigma(n >> valuation(n, 2), -4) - n % 2; \\ Amiram Eldar, Oct 13 2023

Formula

a(n) = n^4 * Sum_{d|n, d
G.f.: Sum_{k>=2} k^4 * x^k / (1 - x^(2*k)). - Ilya Gutkovskiy, May 14 2023
From Amiram Eldar, Oct 13 2023: (Start)
a(n) = A051001(n) * A006519(n)^4 - A000035(n).
Sum_{k=1..n} a(k) = c * n^5 / 5, where c = 31*zeta(5)/32 = 1.00452376... . (End)