A352050 Sum of the 4th powers of the divisor complements of the odd proper divisors of n.
0, 16, 81, 256, 625, 1312, 2401, 4096, 6642, 10016, 14641, 20992, 28561, 38432, 51331, 65536, 83521, 106288, 130321, 160256, 196963, 234272, 279841, 335872, 391250, 456992, 538083, 614912, 707281, 821312, 923521, 1048576, 1200643, 1336352, 1503651, 1700608, 1874161
Offset: 1
Examples
a(10) = 10^4 * Sum_{d|10, d<10, d odd} 1 / d^4 = 10^4 * (1/1^4 + 1/5^4) = 10016.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f:= proc(n) local m,d; m:= n/2^padic:-ordp(n,2); add((n/d)^4, d = select(`<`,numtheory:-divisors(m),n)) end proc:map(f, [$1..40]); # Robert Israel, Apr 03 2023
-
Mathematica
A352050[n_]:=DivisorSum[n,1/#^4&,#
A352050,50] (* Paolo Xausa, Aug 09 2023 *) a[n_] := DivisorSigma[-4, n/2^IntegerExponent[n, 2]] * n^4 - Mod[n, 2]; Array[a, 100] (* Amiram Eldar, Oct 13 2023 *) -
PARI
a(n) = n^4 * sigma(n >> valuation(n, 2), -4) - n % 2; \\ Amiram Eldar, Oct 13 2023
Formula
a(n) = n^4 * Sum_{d|n, d
G.f.: Sum_{k>=2} k^4 * x^k / (1 - x^(2*k)). - Ilya Gutkovskiy, May 14 2023
From Amiram Eldar, Oct 13 2023: (Start)
Sum_{k=1..n} a(k) = c * n^5 / 5, where c = 31*zeta(5)/32 = 1.00452376... . (End)