A352054 Sum of the 8th powers of the divisor complements of the odd proper divisors of n.
0, 256, 6561, 65536, 390625, 1679872, 5764801, 16777216, 43053282, 100000256, 214358881, 430047232, 815730721, 1475789312, 2563287811, 4294967296, 6975757441, 11021640448, 16983563041, 25600065536, 37828630723, 54875873792, 78310985281, 110092091392, 152588281250
Offset: 1
Examples
a(10) = 10^8 * Sum_{d|10, d<10, d odd} 1 / d^8 = 10^8 * (1/1^8 + 1/5^8) = 100000256.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
A352054[n_]:=DivisorSum[n,1/#^8&,#
A352054,50] (* Paolo Xausa, Aug 09 2023 *) a[n_] := DivisorSigma[-8, n/2^IntegerExponent[n, 2]] * n^8 - Mod[n, 2]; Array[a, 100] (* Amiram Eldar, Oct 13 2023 *) -
PARI
a(n) = n^8 * sigma(n >> valuation(n, 2), -8) - n % 2; \\ Amiram Eldar, Oct 13 2023
Formula
a(n) = n^8 * Sum_{d|n, d
G.f.: Sum_{k>=2} k^8 * x^k / (1 - x^(2*k)). - Ilya Gutkovskiy, May 19 2023
From Amiram Eldar, Oct 13 2023: (Start)
Sum_{k=1..n} a(k) = c * n^9 / 9, where c = 511*zeta(9)/512 = 1.0000513451... . (End)