A352056 Sum of the 10th powers of the divisor complements of the odd proper divisors of n.
0, 1024, 59049, 1048576, 9765625, 60467200, 282475249, 1073741824, 3486843450, 10000001024, 25937424601, 61918412800, 137858491849, 289254656000, 576660215299, 1099511627776, 2015993900449, 3570527693824, 6131066257801, 10240001048576, 16680163512499
Offset: 1
Examples
a(10) = 10^10 * Sum_{d|10, d<10, d odd} 1 / d^10 = 10^10 * (1/1^10 + 1/5^10) = 10000001024.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
A352056[n_]:=DivisorSum[n,1/#^10&,#
A352056,50] (* Paolo Xausa, Aug 10 2023 *) a[n_] := DivisorSigma[-10, n/2^IntegerExponent[n, 2]] * n^10 - Mod[n, 2]; Array[a, 100] (* Amiram Eldar, Oct 13 2023 *) -
PARI
a(n) = n^10 * sigma(n >> valuation(n, 2), -10) - n % 2; \\ Amiram Eldar, Oct 13 2023
Formula
a(n) = n^10 * Sum_{d|n, d
G.f.: Sum_{k>=2} k^10 * x^k / (1 - x^(2*k)). - Ilya Gutkovskiy, May 19 2023
From Amiram Eldar, Oct 13 2023: (Start)
Sum_{k=1..n} a(k) = c * n^11 / 11, where c = 2047*zeta(11)/2048 = 1.00000566605... . (End)