A352080 a(n) is the number of times that the square root operation must be applied to n in order to reach an irrational number.
1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 2
Keywords
Examples
a(2) = 1 because sqrt(2) is irrational. a(16) = 3 because sqrt(16) = 16^(1/2) = 4, sqrt(sqrt(16)) = 16^(1/4) = 2, but sqrt(sqrt(sqrt(16))) = 16^(1/8) = sqrt(2), which is irrational.
Crossrefs
Programs
-
Mathematica
a[n_] := IntegerExponent[GCD @@ FactorInteger[n][[;; , 2]], 2] + 1; Array[a, 100, 2] (* Amiram Eldar, Mar 03 2022 *)
-
PARI
a(n) = if (!issquare(n, &n), 1, a(n)+1); \\ Michel Marcus, Mar 03 2022
Formula
a(n) is the minimum k such that n^(1/2^k) is irrational.
Comments