cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352115 Partial sums of the even triangular numbers (A014494).

Original entry on oeis.org

0, 6, 16, 44, 80, 146, 224, 344, 480, 670, 880, 1156, 1456, 1834, 2240, 2736, 3264, 3894, 4560, 5340, 6160, 7106, 8096, 9224, 10400, 11726, 13104, 14644, 16240, 18010, 19840, 21856, 23936, 26214, 28560, 31116, 33744, 36594, 39520, 42680, 45920, 49406, 52976, 56804
Offset: 0

Views

Author

David James Sycamore, Mar 05 2022

Keywords

Comments

The absolute difference between the n-th partial sum of the odd triangular numbers and the (n-1)-th partial sum of the even triangular numbers is equal to n; see formula.
Partial sums of the even generalized hexagonal numbers. - Omar E. Pol, Mar 05 2022

Examples

			a(0) = 0 because 0 is the first even term in A000217.
a(1) = 6, the sum of the first two even terms in A000217, and so on.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 1, -4, 1, 2, -1}, {0, 6, 16, 44, 80, 146}, 50] (* Amiram Eldar, Mar 05 2022 *)
  • PARI
    te(n) = (2*n+1)*(2*n+1-(-1)^n)/2; \\ A014494
    a(n) = sum(k=0, n, te(k)); \\ Michel Marcus, Mar 06 2022
    
  • Python
    def A352115(n): return (n + 1)*(2*n*(n+2) + 3*(n%2))//3 # Chai Wah Wu, Mar 11 2022

Formula

a(n) = Sum_{k=0..n-1} A014494(k) = Sum_{k=0..n-1} (2*k+1)(2*k+1-(-1)^k)/2.
|A352116(n) - a(n-1)| = n.
A352116(n) + a(n-1) = A000447(n), (n >= 1).
From Stefano Spezia, Mar 05 2022: (Start)
a(n) = (n + 1)*(4*n^2 + 8*n + 3 - 3*(-1)^n)/6.
G.f.: 2*x*(3 + 2*x + 3*x^2)/((1 - x)^4*(1 + x)^2). (End)