A352139
Expansion of e.g.f. 1/(exp(x) - log(1 - x)).
Original entry on oeis.org
1, -2, 6, -27, 161, -1205, 10799, -113043, 1351461, -18183781, 271784079, -4469044657, 80160267791, -1557710354083, 32597642189657, -730897865864471, 17480390183397209, -444198879957594857, 11951585821669838395, -339434402344422296117
Offset: 0
-
m = 19; Range[0, m]! * CoefficientList[Series[1/(Exp[x] - Log[1 - x]), {x, 0, m}], x] (* Amiram Eldar, Mar 06 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(exp(x)-log(1-x))))
-
a(n) = if(n==0, 1, -sum(k=1, n, ((k-1)!+1)*binomial(n, k)*a(n-k)));
A352146
Expansion of e.g.f. 1/(exp(x) + log(1 - x)).
Original entry on oeis.org
1, 0, 0, 1, 5, 23, 139, 1069, 9365, 90971, 981647, 11697167, 152304591, 2149063421, 32668289913, 532328418153, 9256383832665, 171066343532055, 3348245897484091, 69189708307509195, 1505284330388457451, 34391324279752372105, 823258887611521993045
Offset: 0
-
m = 22; Range[0, m]! * CoefficientList[Series[1/(Exp[x] + Log[1 - x]), {x, 0, m}], x] (* Amiram Eldar, Mar 06 2022 *)
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(exp(x)+log(1-x))))
-
a(n) = if(n==0, 1, sum(k=1, n, ((k-1)!-1)*binomial(n, k)*a(n-k)));
A352138
Expansion of e.g.f. 1/(exp(x) - log(1 + x)).
Original entry on oeis.org
1, 0, -2, 1, 17, -17, -401, 817, 16197, -49861, -1123633, 5354787, 105696447, -682603651, -14697824519, 131535803133, 2457119246745, -28321054685609, -572811846560453, 8626026427105983, 146289547341006011, -2784279036040263575, -51756654994427512331
Offset: 0
-
m = 22; Range[0, m]! * CoefficientList[Series[1/(Exp[x] - Log[1 + x]), {x, 0, m}], x] (* Amiram Eldar, Mar 06 2022 *)
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(exp(x)-log(1+x))))
-
a(n) = if(n==0, 1, -sum(k=1, n, ((-1)^k*(k-1)!+1)*binomial(n, k)*a(n-k)));
A352271
Expansion of e.g.f. 1/(2 - exp(x) - log(1 + x)).
Original entry on oeis.org
1, 2, 8, 51, 427, 4485, 56461, 829619, 13929175, 263120293, 5522411441, 127497249825, 3211140897757, 87615489275587, 2574463431688695, 81050546853002151, 2721785052811891411, 97113737702073060713, 3668859532725782696709, 146306156466305491481253
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(x)-log(1+x))))
-
a(n) = if(n==0, 1, sum(k=1, n, ((-1)^(k-1)*(k-1)!+1)*binomial(n, k)*a(n-k)));
Showing 1-4 of 4 results.