cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A352260 Integers that need 2 iterations of the map x->A352172(x) to reach 1.

Original entry on oeis.org

25, 52, 125, 152, 205, 215, 250, 251, 455, 502, 512, 520, 521, 545, 554, 1025, 1052, 1125, 1152, 1205, 1215, 1250, 1251, 1455, 1502, 1512, 1520, 1521, 1545, 1554, 2005, 2015, 2050, 2051, 2105, 2115, 2150, 2151, 2255, 2500, 2501, 2510, 2511, 2525, 2552, 4055, 4155, 4505
Offset: 1

Views

Author

Michel Marcus, Mar 10 2022

Keywords

Examples

			25 -> 1000 -> 1.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := (Times @@ Select[IntegerDigits[n], # > 1 &])^3; q[n_, len_] := (v = Nest[f, n, len - 1]) != 1 && f[v] == 1; Select[Range[4505], q[#, 2] &] (* Amiram Eldar, Mar 10 2022 *)
  • PARI
    f(n) = vecprod(apply(x->x^3, select(x->(x>1), digits(n)))); \\ A352172
    isok2(n) = {for (k=1, 2, n = f(n); if ((n==1), return(k==2)););}
    
  • Python
    from math import prod
    def A352172(n): return prod(int(d)**3 for d in str(n) if d != '0')
    def ok(x):
        x = A352172(x)
        return x != 1 and A352172(x) == 1
    print([k for k in range(4506) if ok(k)]) # Michael S. Branicky, Mar 10 2022

A352261 Integers that need 3 iterations of the map x->A352172(x) to reach 1.

Original entry on oeis.org

5, 8, 15, 18, 24, 42, 50, 51, 80, 81, 105, 108, 115, 118, 124, 142, 150, 151, 180, 181, 204, 214, 222, 240, 241, 255, 258, 285, 402, 412, 420, 421, 445, 454, 500, 501, 510, 511, 525, 528, 544, 552, 582, 800, 801, 810, 811, 825, 852, 1005, 1008, 1015, 1018, 1024, 1042, 1050
Offset: 1

Views

Author

Michel Marcus, Mar 10 2022

Keywords

Examples

			5 -> 125 -> 1000 -> 1.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := (Times @@ Select[IntegerDigits[n], # > 1 &])^3; q[n_, len_] := (v = Nest[f, n, len - 1]) != 1 && f[v] == 1; Select[Range[1050], q[#, 3] &] (* Amiram Eldar, Mar 10 2022 *)
  • PARI
    f(n) = vecprod(apply(x->x^3, select(x->(x>1), digits(n)))); \\ A352172
    isok3(n) = {for (k=1, 3, n = f(n); if ((n==1), return(k==3)););}
    
  • Python
    from math import prod
    def A352172(n): return prod(int(d)**3 for d in str(n) if d != '0')
    def ok(x, iters=3):
        i = 0
        while i < iters and x != 1: i, x = i+1, A352172(x)
        return i == iters and x == 1
    print([k for k in range(1051) if ok(k)]) # Michael S. Branicky, Mar 10 2022

A352262 Integers that need 4 iterations of the map x->A352172(x) to reach 1.

Original entry on oeis.org

2, 12, 20, 21, 45, 54, 102, 112, 120, 121, 145, 154, 200, 201, 210, 211, 225, 252, 405, 415, 450, 451, 504, 514, 522, 540, 541, 558, 585, 855, 1002, 1012, 1020, 1021, 1045, 1054, 1102, 1112, 1120, 1121, 1145, 1154, 1200, 1201, 1210, 1211, 1225, 1252, 1405, 1415, 1450, 1451
Offset: 1

Views

Author

Michel Marcus, Mar 10 2022

Keywords

Examples

			2 -> 8 -> 512 -> 1000 -> 1.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := (Times @@ Select[IntegerDigits[n], # > 1 &])^3; q[n_, len_] := (v = Nest[f, n, len - 1]) != 1 && f[v] == 1; Select[Range[1451], q[#, 4] &] (* Amiram Eldar, Mar 10 2022 *)
  • PARI
    f(n) = vecprod(apply(x->x^3, select(x->(x>1), digits(n)))); \\ A352172
    isok4(n) = {for (k=1, 4, n = f(n); if ((n==1), return(k==4)););}
    
  • Python
    from math import prod
    def A352172(n): return prod(int(d)**3 for d in str(n) if d != '0')
    def ok(x, iters=4):
        i = 0
        while i < iters and x != 1: i, x = i+1, A352172(x)
        return i == iters and x == 1
    print([k for k in range(1452) if ok(k)]) # Michael S. Branicky, Mar 10 2022

A352263 Integers that need 5 iterations of the map x->A352172(x) to reach 1.

Original entry on oeis.org

679, 697, 769, 796, 967, 976, 1679, 1697, 1769, 1796, 1967, 1976, 2379, 2397, 2739, 2793, 2937, 2973, 3279, 3297, 3367, 3376, 3637, 3673, 3729, 3736, 3763, 3792, 3927, 3972, 6079, 6097, 6179, 6197, 6337, 6373, 6709, 6719, 6733, 6790, 6791, 6907, 6917, 6970, 6971, 7069, 7096
Offset: 1

Views

Author

Michel Marcus, Mar 10 2022

Keywords

Examples

			679 -> 54010152 -> 8000000 -> 512 -> 1000 -> 1.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := (Times @@ Select[IntegerDigits[n], # > 1 &])^3; q[n_, len_] := (v = Nest[f, n, len - 1]) != 1 && f[v] == 1; Select[Range[7096], q[#, 5] &] (* Amiram Eldar, Mar 10 2022 *)
  • PARI
    f(n) = vecprod(apply(x->x^3, select(x->(x>1), digits(n)))); \\ A352172
    isok5(n) = {for (k=1, 5, n = f(n); if ((n==1), return(k==5)););}
    
  • Python
    from math import prod
    def A352172(n): return prod(int(d)**3 for d in str(n) if d != '0')
    def ok(x, iters=5):
        i = 0
        while i < iters and x != 1: i, x = i+1, A352172(x)
        return i == iters and x == 1
    print([k for k in range(7100) if ok(k)]) # Michael S. Branicky, Mar 10 2022

A352264 Integers that need 6 iterations of the map x->A352172(x) to reach 1.

Original entry on oeis.org

377, 737, 773, 1377, 1737, 1773, 3077, 3177, 3707, 3717, 3770, 3771, 3889, 3898, 3988, 4689, 4698, 4869, 4896, 4968, 4986, 5677, 5767, 5776, 6489, 6498, 6577, 6668, 6686, 6757, 6775, 6849, 6866, 6894, 6948, 6984, 7037, 7073, 7137, 7173, 7307, 7317, 7370, 7371, 7567, 7576
Offset: 1

Views

Author

Michel Marcus, Mar 10 2022

Keywords

Examples

			377 -> 3176523 -> 54010152000 -> 8000000 -> 512 -> 1000 -> 1.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := (Times @@ Select[IntegerDigits[n], # > 1 &])^3; q[n_, len_] := (v = Nest[f, n, len - 1]) != 1 && f[v] == 1; Select[Range[7576], q[#, 6] &] (* Amiram Eldar, Mar 10 2022 *)
  • PARI
    f(n) = vecprod(apply(x->x^3, select(x->(x>1), digits(n)))); \\ A352172
    isok6(n) = {for (k=1, 6, n = f(n); if ((n==1), return(k==6)););}
    
  • Python
    from math import prod
    def A352172(n): return prod(int(d)**3 for d in str(n) if d != '0')
    def ok(x, iters=6):
        i = 0
        while i < iters and x != 1: i, x = i+1, A352172(x)
        return i == iters and x == 1
    print([k for k in range(7577) if ok(k)]) # Michael S. Branicky, Mar 10 2022

A352265 Integers that need 7 iterations of the map x->A352172(x) to reach 1.

Original entry on oeis.org

478, 487, 748, 784, 847, 874, 1478, 1487, 1748, 1784, 1847, 1874, 2278, 2287, 2447, 2474, 2728, 2744, 2782, 2827, 2872, 4078, 4087, 4178, 4187, 4247, 4274, 4427, 4472, 4708, 4718, 4724, 4742, 4780, 4781, 4807, 4817, 4870, 4871, 5788, 5878, 5887, 7048, 7084, 7148, 7184, 7228
Offset: 1

Views

Author

Michel Marcus, Mar 10 2022

Keywords

Examples

			478 -> 11239424 -> 5159780352 -> 54010152000000000 -> 8000000 -> 512 -> 1000 -> 1.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := (Times @@ Select[IntegerDigits[n], # > 1 &])^3; q[n_, len_] := (v = Nest[f, n, len - 1]) != 1 && f[v] == 1; Select[Range[7228], q[#, 7] &] (* Amiram Eldar, Mar 10 2022 *)
  • PARI
    f(n) = vecprod(apply(x->x^3, select(x->(x>1), digits(n)))); \\ A352172
    isok7(n) = {for (k=1, 7, n = f(n); if ((n==1), return(k==7)););}
    
  • Python
    from math import prod
    def A352172(n): return prod(int(d)**3 for d in str(n) if d != '0')
    def ok(x, iters=7):
        i = 0
        while i < iters and x != 1: i, x = i+1, A352172(x)
        return i == iters and x == 1
    print([k for k in range(7229) if ok(k)]) # Michael S. Branicky, Mar 10 2022

A352266 Integers that need 8 iterations of the map x->A352172(x) to reach 1.

Original entry on oeis.org

27, 57, 72, 75, 127, 157, 172, 175, 207, 217, 270, 271, 355, 457, 475, 507, 517, 535, 547, 553, 570, 571, 574, 702, 705, 712, 715, 720, 721, 745, 750, 751, 754, 1027, 1057, 1072, 1075, 1127, 1157, 1172, 1175, 1207, 1217, 1270, 1271, 1355, 1457, 1475, 1507, 1517, 1535, 1547
Offset: 1

Views

Author

Michel Marcus, Mar 10 2022

Keywords

Examples

			27 -> 2744 -> 11239424 -> 5159780352 -> 54010152000000000 -> 8000000 -> 512 -> 1000 -> 1.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := (Times @@ Select[IntegerDigits[n], # > 1 &])^3; q[n_, len_] := (v = Nest[f, n, len - 1]) != 1 && f[v] == 1; Select[Range[1547], q[#, 8] &] (* Amiram Eldar, Mar 10 2022 *)
  • PARI
    f(n) = vecprod(apply(x->x^3, select(x->(x>1), digits(n)))); \\ A352172
    isok8(n) = {for (k=1, 8, n = f(n); if ((n==1), return(k==8)););}
    
  • Python
    from math import prod
    def A352172(n): return prod(int(d)**3 for d in str(n) if d != '0')
    def ok(x, iters=8):
        i = 0
        while i < iters and x != 1: i, x = i+1, A352172(x)
        return i == iters and x == 1
    print([k for k in range(1548) if ok(k)]) # Michael S. Branicky, Mar 10 2022

A352267 Integers that need 9 iterations of the map x->A352172(x) to reach 1.

Original entry on oeis.org

3, 13, 30, 31, 56, 65, 103, 113, 130, 131, 156, 165, 235, 253, 300, 301, 310, 311, 325, 352, 506, 516, 523, 532, 560, 561, 605, 615, 650, 651, 1003, 1013, 1030, 1031, 1056, 1065, 1103, 1113, 1130, 1131, 1156, 1165, 1235, 1253, 1300, 1301, 1310, 1311, 1325, 1352, 1506, 1516
Offset: 1

Views

Author

Michel Marcus, Mar 10 2022

Keywords

Examples

			3 -> 27 -> 2744 -> 11239424 -> 5159780352 -> 54010152000000000 -> 8000000 -> 512 -> 1000 -> 1.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := (Times @@ Select[IntegerDigits[n], # > 1 &])^3; q[n_, len_] := (v = Nest[f, n, len - 1]) != 1 && f[v] == 1; Select[Range[1516], q[#, 9] &] (* Amiram Eldar, Mar 10 2022 *)
  • PARI
    f(n) = vecprod(apply(x->x^3, select(x->(x>1), digits(n)))); \\ A352172
    isok9(n) = {for (k=1, 9, n = f(n); if ((n==1), return(k==9)););}
    
  • Python
    from math import prod
    def A352172(n): return prod(int(d)**3 for d in str(n) if d != '0')
    def ok(x, iters=9):
        i = 0
        while i < iters and x != 1: i, x = i+1, A352172(x)
        return i == iters and x == 1
    print([k for k in range(1517) if ok(k)]) # Michael S. Branicky, Mar 10 2022

A352268 Integers that need 10 iterations of the map x->A352172(x) to reach 1.

Original entry on oeis.org

55, 155, 505, 515, 550, 551, 1055, 1155, 1505, 1515, 1550, 1551, 2555, 5005, 5015, 5050, 5051, 5105, 5115, 5150, 5151, 5255, 5500, 5501, 5510, 5511, 5525, 5552, 10055, 10155, 10505, 10515, 10550, 10551, 11055, 11155, 11505, 11515, 11550, 11551, 12555, 15005, 15015, 15050
Offset: 1

Views

Author

Michel Marcus, Mar 10 2022

Keywords

Examples

			55 -> 15625 -> 27000000 -> 2744 -> 11239424 -> 5159780352 -> 54010152000000000 -> 8000000 -> 512 -> 1000 -> 1.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := (Times @@ Select[IntegerDigits[n], # > 1 &])^3; q[n_, len_] := (v = Nest[f, n, len - 1]) != 1 && f[v] == 1; Select[Range[15050], q[#, 10] &] (* Amiram Eldar, Mar 10 2022 *)
  • PARI
    f(n) = vecprod(apply(x->x^3, select(x->(x>1), digits(n)))); \\ A352172
    isok10(n) = {for (k=1, 10, n = f(n); if ((n==1), return(k==10)););}
    
  • Python
    from math import prod
    def A352172(n): return prod(int(d)**3 for d in str(n) if d != '0')
    def ok(x, iters=10):
        i = 0
        while i < iters and x != 1: i, x = i+1, A352172(x)
        return i == iters and x == 1
    print([k for k in range(15051) if ok(k)]) # Michael S. Branicky, Mar 10 2022

A351876 Numbers whose trajectory under iteration of the product of cubes of nonzero digits map includes 1 (conjectured).

Original entry on oeis.org

1, 2, 3, 5, 8, 10, 11, 12, 13, 15, 18, 20, 21, 24, 25, 27, 30, 31, 42, 45, 50, 51, 52, 54, 55, 56, 57, 65, 72, 75, 80, 81, 100, 101, 102, 103, 105, 108, 110, 111, 112, 113, 115, 118, 120, 121, 124, 125, 127, 130, 131, 142, 145, 150, 151, 152, 154, 155, 156, 157, 165, 172, 175, 180, 181
Offset: 1

Views

Author

Luca Onnis, Feb 23 2022

Keywords

Comments

To determine whether a given number k is a term of this sequence, start with k, take the cube of the product of its nonzero digits, apply the same process to the result, and continue until 30 iterations are reached. If 1 is reached during the process, k is a term of this sequence. If not, k is not a term of this sequence.
Every power 10^k is a term of this sequence.
If k is a term, the numbers obtained by inserting zeros anywhere in k are terms.
If k is a term, the numbers obtained by inserting ones anywhere in k are terms.
If k is a term, each distinct permutation of the digits of k gives another term.
If k is a term, the number of iterations required to converge to 1 is less than or equal to 10 (conjectured).

Examples

			217 is a term of the sequence; its trajectory is 217 -> 2744 -> 11239424 -> 5159780352 -> 54010152000000000 -> 8000000 -> 512 -> 1000 -> 1.
4 is not a term of the sequence; its trajectory begins with 4 -> 64 -> 13824 -> 7077888 -> 5416169448144896 -> 188436971148778297205194752000 -> 1545896640285238037724131582088286996267008000000 -> ... Subsequent terms in the trajectory get larger and larger, rather than reaching 1. However, it is not yet known whether it eventually reaches 1 after some number of iterations > 30.
		

Crossrefs

Cf. A352172 (product of cubes of nonzero digits).

Programs

  • Mathematica
    Select[Range[1000], FixedPoint[ Product[ReplaceAll[0 -> 1][IntegerDigits[#]][[i]]^3, {i, 1, Length[ReplaceAll[0 -> 1][IntegerDigits[#]]]}] &, #, 12] == 1 &]
Showing 1-10 of 11 results. Next