cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A009233 Expansion of e.g.f. exp(sinh(x)*x) (even powers only).

Original entry on oeis.org

1, 2, 16, 246, 5944, 202330, 9099564, 517447126, 36048776656, 3003924569778, 293835907664980, 33232296062419630, 4291773869167401720, 626311538509296801226, 102365694283336181089084, 18595053487766135171539590, 3729223211361742071603266464
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=30},Take[CoefficientList[Series[Exp[Sinh[x]*x],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Jul 31 2020 *)
  • PARI
    my(x='x+O('x^40), v=Vec(serlaplace(exp(sinh(x)*x)))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, Mar 10 2022

Formula

a(0) = 1; a(n) = 2 * Sum_{k=1..n} binomial(2*n-1,2*k-1) * k * a(n-k). - Ilya Gutkovskiy, Mar 10 2022

Extensions

Extended and signs tested by Olivier Gérard, Mar 15 1997
Previous Mathematica program replaced by Harvey P. Dale, Jul 31 2020

A352253 Expansion of e.g.f. 1 / (1 - x * sinh(x) / 2) (even powers only).

Original entry on oeis.org

1, 1, 8, 153, 5492, 316625, 26774622, 3121729709, 479962730648, 94087054172673, 22904161764512570, 6778870099212235805, 2397161662661680925364, 998186321121004312238513, 483430830256916593106991782, 269435322393253822641626419725, 171224984800186115316322226731952
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 09 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 32; Take[CoefficientList[Series[1/(1 - x Sinh[x]/2), {x, 0, nmax}], x] Range[0, nmax]!, {1, -1, 2}]
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[2 n, 2 k] k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 16}]
  • PARI
    my(x='x+O('x^40), v=Vec(serlaplace(1 /(1-x*sinh(x)/2)))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, Mar 10 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(2*n,2*k) * k * a(n-k).
Showing 1-2 of 2 results.