A352523 Number of integer compositions of n with exactly k nonfixed points (parts not on the diagonal).
1, 1, 0, 0, 2, 0, 1, 1, 2, 0, 0, 4, 2, 2, 0, 0, 5, 5, 4, 2, 0, 1, 3, 12, 8, 6, 2, 0, 0, 7, 14, 19, 14, 8, 2, 0, 0, 8, 21, 33, 32, 22, 10, 2, 0, 0, 9, 30, 54, 63, 54, 32, 12, 2, 0, 1, 6, 47, 80, 116, 116, 86, 44, 14, 2, 0, 0, 11, 53, 129, 194, 229, 202, 130, 58, 16, 2, 0
Offset: 0
Examples
Triangle begins: 1 1 0 0 2 0 1 1 2 0 0 4 2 2 0 0 5 5 4 2 0 1 3 12 8 6 2 0 0 7 14 19 14 8 2 0 0 8 21 33 32 22 10 2 0 0 9 30 54 63 54 32 12 2 0 1 6 47 80 116 116 86 44 14 2 0 ... For example, row n = 6 counts the following compositions (empty column indicated by dot): (123) (6) (24) (231) (2112) (21111) . (15) (33) (312) (2121) (111111) (42) (51) (411) (3111) (114) (1113) (11112) (132) (1122) (11121) (141) (1311) (11211) (213) (2211) (222) (12111) (321) (1131) (1212) (1221)
Links
- John Tyler Rascoe, Rows n = 0..130, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; expand(`if`(n=0, 1, add(`if`(i=j, 1, x)*b(n-j, i+1), j=1..n))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 1)): seq(T(n), n=0..12); # Alois P. Heinz, Mar 19 2025
-
Mathematica
pnq[y_]:=Length[Select[Range[Length[y]],#!=y[[#]]&]]; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],pnq[#]==k&]],{n,0,9},{k,0,n}]
-
PARI
T_xy(max_row) = {my(N=max_row+1, x='x+O('x^N), h= sum(i=0, N, prod(j=1, i, y*(x/(1-x)-x^j)+x^j))); vector(N, n, my(r=Vecrev(polcoeff(h, n-1))); if(n<2, r, concat(r,[0])))} T_xy(10) \\ John Tyler Rascoe, Mar 21 2025
Formula
G.f.: Sum_{i>=0} Product_{j=1..i} y*(x/(1-x) - x^j) + x^j. - John Tyler Rascoe, Mar 19 2025
Comments