cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A046510 Numbers with multiplicative persistence value 1.

Original entry on oeis.org

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 30, 31, 32, 33, 40, 41, 42, 50, 51, 60, 61, 70, 71, 80, 81, 90, 91, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 130, 131, 132, 133
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Comments

Numbers 0 to 9 have a multiplication persistence of 0, not 1. - Daniel Mondot, Mar 12 2022

Examples

			24 -> 2 * 4 = [ 8 ] -> one digit in one step.
		

Crossrefs

Numbers with multiplicative persistence m: this sequence (m=1), A046511 (m=2), A046512 (m=3), A046513 (m=4), A046514 (m=5), A046515 (m=6), A046516 (m=7), A046517 (m=8), A046518 (m=9), A352531 (m=10), A352532 (m=11).

Programs

  • Mathematica
    Select[Range[10, 121], IntegerLength[Times @@ IntegerDigits[#]] <= 1 &] (* Jayanta Basu, Jun 26 2013 *)
  • PARI
    isok(n) = my(d=digits(n)); (#d > 1) && (#digits(prod(k=1, #d, d[k])) <= 1); \\ Michel Marcus, Apr 12 2018 and Mar 13 2022
    
  • Python
    from math import prod
    def ok(n): return n > 9 and prod(map(int, str(n))) < 10
    print([k for k in range(134) if ok(k)]) # Michael S. Branicky, Mar 13 2022

Extensions

Incorrect terms 0 to 9 removed by Daniel Mondot, Mar 12 2022

A352532 Numbers with multiplicative persistence value 11.

Original entry on oeis.org

277777788888899, 277777788888989, 277777788888998, 277777788889889, 277777788889898, 277777788889988, 277777788898889, 277777788898898, 277777788898988, 277777788899888, 277777788988889, 277777788988898, 277777788988988, 277777788989888, 277777788998888
Offset: 1

Views

Author

Daniel Mondot, Mar 19 2022

Keywords

Comments

The product of the digits of each term is either 4996238671872 or 937638166841712.
The first term that produces the product 937638166841712 is a(1178695599).

Examples

			277777788888899 -> 4996238671872 -> 438939648 -> 4478976 -> 338688 -> 27648 -> 2688 -> 768 -> 336 -> 54 -> 20 -> 0. One digit in 11 steps.
		

Crossrefs

Showing 1-2 of 2 results.