cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A046510 Numbers with multiplicative persistence value 1.

Original entry on oeis.org

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 30, 31, 32, 33, 40, 41, 42, 50, 51, 60, 61, 70, 71, 80, 81, 90, 91, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 130, 131, 132, 133
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Comments

Numbers 0 to 9 have a multiplication persistence of 0, not 1. - Daniel Mondot, Mar 12 2022

Examples

			24 -> 2 * 4 = [ 8 ] -> one digit in one step.
		

Crossrefs

Numbers with multiplicative persistence m: this sequence (m=1), A046511 (m=2), A046512 (m=3), A046513 (m=4), A046514 (m=5), A046515 (m=6), A046516 (m=7), A046517 (m=8), A046518 (m=9), A352531 (m=10), A352532 (m=11).

Programs

  • Mathematica
    Select[Range[10, 121], IntegerLength[Times @@ IntegerDigits[#]] <= 1 &] (* Jayanta Basu, Jun 26 2013 *)
  • PARI
    isok(n) = my(d=digits(n)); (#d > 1) && (#digits(prod(k=1, #d, d[k])) <= 1); \\ Michel Marcus, Apr 12 2018 and Mar 13 2022
    
  • Python
    from math import prod
    def ok(n): return n > 9 and prod(map(int, str(n))) < 10
    print([k for k in range(134) if ok(k)]) # Michael S. Branicky, Mar 13 2022

Extensions

Incorrect terms 0 to 9 removed by Daniel Mondot, Mar 12 2022

A352531 Numbers with multiplicative persistence value 10.

Original entry on oeis.org

3778888999, 3778889899, 3778889989, 3778889998, 3778898899, 3778898989, 3778898998, 3778899889, 3778899898, 3778899988, 3778988899, 3778988989, 3778988998, 3778989889, 3778989898, 3778989988, 3778998889, 3778998898, 3778998988, 3778999888, 3779888899, 3779888989
Offset: 1

Views

Author

Daniel Mondot, Mar 19 2022

Keywords

Comments

The product of the digits of each term is either 438939648 or 231928233984.
The first term that produces the product 231928233984 is a(959230456).

Examples

			3778888999 -> 438939648 -> 4478976 -> 338688 -> 27648 -> 2688 -> 768 -> 336 -> 54 -> 20 -> 0. One digit in 10 steps.
		

Crossrefs

Showing 1-2 of 2 results.