cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A354513 The numbers whose square's position in the Wythoff array is immediately followed by another square in the next column.

Original entry on oeis.org

11, 386, 2441, 25748423, 637519684, 2799936925, 3934324789543, 127501370029150, 21274660147684109, 644571595359295797, 15845190736671957299, 995980378496501932493, 47375682236837399943653, 213688560255016550712685, 28372206851301867342910959, 3120729065082950391169492805
Offset: 1

Views

Author

Chittaranjan Pardeshi, Aug 16 2022

Keywords

Comments

From Jianing Song, Aug 21 2022: (Start)
Numbers k > 0 such that floor((k^2+1)*phi) - 1 is a square, phi = A001622.
Suppose that k is a term and that floor((k^2+1)*phi) = m^2+1, then (m^2+1)/(k^2+1) < phi < (m^2+2)/(k^2+1), so |sqrt(phi) - m/k| < max{m/k - sqrt((m^2+1)/(k^2+1)), sqrt((m^2+2)/(k^2+1)) - m/k} = m/k - sqrt((m^2+1)/(k^2+1)) <= sqrt((k^2+1)*phi-1)/k - sqrt(phi) < 1/(2*sqrt(phi)*k^2). According to the Mathematics Stack Exchange link, m/k is a convergent to sqrt(phi), so this is a subsequence of A225205. The terms are b(3), b(5), b(11), b(15), b(19), b(20), ... for b = A225205.
For k = A225205(r), m = A225204(r), we have |sqrt(phi) - m/k| < 1/(k*A225205(r+1)) (by Theorem 5 of the Wikipedia link), so k = A225205(r) is a term if 1/(k*A225205(r+1)) < min{m/k - sqrt((m^2+1)/(k^2+1)), sqrt((m^2+2)/(k^2+1)) - m/k} = sqrt((m^2+2)/(k^2+1)) - m/k, or A225205(r+1) > (k*sqrt((m^2+2)/(k^2+1)) - m)^(-1).
If k = A225205(r) is a term with even r, then k is also in A354549, since m^2 < k^2*phi < k^2*(m^2+2)/(k^2+1) < m^2+phi^(-2) for m = A225204(r), so floor(k^2*phi) = m^2. Furthermore we have {k^2*phi} < phi^(-2), where {} denotes the fractional part. Conversely, if k is in A354549 and {k^2*phi} < phi^(-2), then k is in this sequence since floor((k^2+1)*phi) = floor(k^2*phi)+1 in this case. (End)

Examples

			11 is a term since 11^2 = 121 has another square, 196 = 14^2, immediately to its right in the Wythoff array. Array row: 46, 75, 121, 196, ...
		

Crossrefs

Programs

  • PARI
    phi=quadgen(5);
    nextcolumn(x) = ((x+1)*phi-1)\1; \\ A026274(x+1)
    for(i=1, 10000000000, if ( issquare( nextcolumn (i^2)), print1(i, ", ")));
    
  • PARI
    A000201(n) = (n+sqrtint(5*n^2))\2;
    my(cofr=A331692_vector_bits(1000), conv=matrix(2, #cofr)); conv[, 1]=[1, 1]~; conv[, 2]=[4, 3]~; for(n=3, #cofr, conv[, n]=cofr[n]*conv[, n-1]+conv[, n-2]; if(A000201(conv[2, n]^2+1) == conv[1, n]^2+1, print1(conv[2, n], ", "))) \\ Jianing Song, Aug 21 2022, modified on Aug 28 2022 according to Kevin Ryde's program for A331692

A352537 Primes whose position in the Wythoff array is immediately followed by a prime both in the next column and the next row.

Original entry on oeis.org

2, 3, 919, 1223, 1699, 3329, 8009, 11717, 13691, 19079, 20921, 21011, 22643, 22739, 24623, 26309, 28571, 28619, 28979, 30389, 33629, 34739, 35257, 41179, 42577, 48647, 54133, 58601, 59627, 61511, 65171, 70979, 75707, 80141, 84221, 86869, 90677, 93557, 94781
Offset: 1

Views

Author

Michel Marcus, Mar 20 2022

Keywords

Examples

			The Wythoff array begins:
   1    2    3    5   ...
   4    7   11   18   ...
   6   10   16   26   ...
   ...
where one can see these 2 patterns:
   2    3   and   3    5
   7             11
so 2 and 3 are terms.
		

Crossrefs

Cf. A003603, A035612, A035513 (Wythoff array).
Intersection of A352538 and A352539.

Programs

  • PARI
    T(n,k) = (n+sqrtint(5*n^2))\2*fibonacci(k+1) + (n-1)*fibonacci(k); \\ A035513
    cell(n) = for (r=1, oo, for (c=1, oo, if (T(r,c) == n, return([r, c])); if (T(r,c) > n, break);););
    isokp(m) = my(pos = cell(prime(m))); isprime (T(pos[1], pos[2]+1)) && isprime(T(pos[1]+1, pos[2]));
    lista(nn) = for (n=1, nn, if (isokp(n), print1(prime(n), ", ")));

A352539 Primes whose position in the Wythoff array is immediately followed by another prime in the next row.

Original entry on oeis.org

2, 3, 13, 17, 59, 71, 101, 157, 347, 359, 401, 683, 821, 881, 919, 1063, 1223, 1613, 1699, 1787, 1931, 2081, 2333, 2663, 2711, 2909, 2999, 3011, 3299, 3329, 3371, 3389, 3623, 3821, 3911, 4019, 4049, 4337, 4349, 4481, 4931, 5171, 5273, 5651, 5741, 5849, 5879, 6029, 6079
Offset: 1

Views

Author

Michel Marcus, Mar 20 2022

Keywords

Examples

			The Wythoff array begins:
   1    2    3    5    8   13  ...
   4    7   11   18   29   47  ...
   6   10   16   26   42   68  ...
   ...
So 2, 3 and 13 are terms since they are vertically followed by 7, 11 and 47.
		

Crossrefs

Cf. A003603, A035612, A035513 (Wythoff array).
Cf. A352537 (next row and column), A352538 (next column).

Programs

  • PARI
    T(n,k) = (n+sqrtint(5*n^2))\2*fibonacci(k+1) + (n-1)*fibonacci(k); \\ A035513
    cell(n) = for (r=1, oo, for (c=1, oo, if (T(r,c) == n, return([r, c])); if (T(r,c) > n, break);););
    isokv(m) = my(pos = cell(prime(m))); isprime (T(pos[1]+1, pos[2]));
    lista(nn) = for (n=1, nn, if (isokv(n), print1(prime(n), ", ")));
Showing 1-3 of 3 results.