A352618 Squares that are 7-smooth.
1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 144, 196, 225, 256, 324, 400, 441, 576, 625, 729, 784, 900, 1024, 1225, 1296, 1600, 1764, 2025, 2304, 2401, 2500, 2916, 3136, 3600, 3969, 4096, 4900, 5184, 5625, 6400, 6561, 7056, 8100, 9216, 9604, 10000, 11025, 11664, 12544, 14400
Offset: 1
Keywords
Examples
49 = 7*7, 81 = (3*3)*(3*3), and 100 = (2*5)*(2*5) are terms.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[120], Max[FactorInteger[#][[;; , 1]]] <= 7 &]^2 (* Amiram Eldar, Mar 24 2022 *) With[{n = 15000}, Union@ Flatten@ Table[2^(2 a)*3^(2 b)*5^(2 c)*7^(2 d), {a, 0, Log[4, n]}, {b, 0, Log[9, n/(2^(2 a))]}, {c, 0, Log[25, n/(2^(2 a)*3^(2 b))]}, {d, 0, Log[49, n/(2^(2 a)*3^(2 b)*5^(2 c))]}]] (* Michael De Vlieger, Mar 26 2022 *)
-
Python
from itertools import count, islice def agen(): for i in count(1): k = i for p in [2, 3, 5, 7]: while k%p == 0: k //= p if k == 1: yield i*i print(list(islice(agen(), 50)))
-
Python
from sympy import integer_log def A352618(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c = n+x for i in range(integer_log(x,7)[0]+1): for j in range(integer_log(m:=x//7**i,5)[0]+1): for k in range(integer_log(r:=m//5**j,3)[0]+1): c -= (r//3**k).bit_length() return c return bisection(f,n,n)**2 # Chai Wah Wu, Sep 17 2024
-
Python
# faster for initial segment of sequence import heapq from itertools import islice from sympy import primerange def A352618gen(p=7): # generator of terms v, oldv, h, psmooth_primes, = 1, 0, [1], list(primerange(1, p+1)) while True: v = heapq.heappop(h) if v != oldv: yield v*v oldv = v for p in psmooth_primes: heapq.heappush(h, v*p) print(list(islice(A352618gen(), 65))) # Michael S. Branicky, Sep 17 2024
Formula
a(n) = A002473(n)^2. - Pontus von Brömssen, Mar 24 2022
Sum_{n>=1} 1/a(n) = 1225/768. - Amiram Eldar, Mar 24 2022
Comments