cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A007289 Expansion of e.g.f. (sin(2*x) + cos(x)) / cos(3*x).

Original entry on oeis.org

1, 2, 8, 46, 352, 3362, 38528, 515086, 7869952, 135274562, 2583554048, 54276473326, 1243925143552, 30884386347362, 825787662368768, 23657073914466766, 722906928498737152, 23471059057478981762, 806875574817679474688, 29279357851856595135406
Offset: 0

Views

Author

Keywords

Comments

Arises in the enumeration of alternating 3-signed permutations.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 3 of A349271.
Cf. A006873, A007286, A225109, A000191 (bisection), A000436 (bisection).

Programs

  • Maple
    A007289 := proc(n) local k,j; add(add((-1)^j*binomial(k,j)*(k-2*j)^n*I^(n-k),j=0..k),k=0..n) end: # Peter Luschny, Jul 31 2011
  • Mathematica
    mx = 17; Range[0, mx]! CoefficientList[ Series[ (Sin[2 x] + Cos[x])/Cos[3 x], {x, 0, mx}], x] (* Robert G. Wilson v, Apr 28 2013 *)
  • PARI
    my(x='x+O('x^66)); Vec(serlaplace((sin(2*x) + cos(x)) / cos(3*x))) \\ Joerg Arndt, Apr 28 2013
    
  • Sage
    from mpmath import mp, polylog, im
    mp.dps = 32; mp.pretty = True
    def aperm3(n): return 2*((1-I)/(1+I))^n*(1+add(binomial(n,j)*polylog(-j,I)*3^j for j in (0..n)))
    def A007289(n) : return im(aperm3(n))
    [int(A007289(n)) for n in (0..17)] # Peter Luschny, Apr 28 2013

Formula

E.g.f.: (sin(2*x) + cos(x)) / cos(3*x).
a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^j*binomial(k,j)*(k-2*j)^n*I^(n-k). - Peter Luschny, Jul 31 2011
a(n) = Im(2*((1-I)/(1+I))^n*(1+sum_{j=0..n}(binomial(n,j)*Li_{-j}(I)*3^j))). - Peter Luschny, Apr 28 2013
a(n) ~ n! * 2^(n+1)*3^(n+1/2)/Pi^(n+1). - Vaclav Kotesovec, Jun 15 2013
a(0) = 1; a(n) = 2 * Sum_{k=0..floor((n-1)/2)} (-1)^k * binomial(n,2*k+1) * a(n-2*k-1). - Ilya Gutkovskiy, Mar 10 2022
From Seiichi Manyama, Jun 25 2025: (Start)
E.g.f.: 1/(1 - 2 * sin(x)).
a(n) = Sum_{k=0..n} 2^k * k! * i^(n-k) * A136630(n,k), where i is the imaginary unit. (End)

A381286 Expansion of e.g.f. 1/(1 - sin(3*x) / 3).

Original entry on oeis.org

1, 1, 2, -3, -48, -339, -1008, 10737, 237312, 2362041, 5432832, -318158523, -7615254528, -87216236379, 173049219072, 33959321252217, 851545449234432, 9561733579228401, -129701862228492288, -9445723672920941043, -239815723596207095808, -2109465061216228379619
Offset: 0

Views

Author

Seiichi Manyama, Feb 18 2025

Keywords

Crossrefs

Programs

  • PARI
    a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
    a(n) = sum(k=0, n, k!*(3*I)^(n-k)*a136630(n, k));

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} (-9)^k * binomial(n,2*k+1) * a(n-2*k-1).
a(n) = Sum_{k=0..n} k! * (3*i)^(n-k) * A136630(n,k), where i is the imaginary unit.

A352640 Expansion of e.g.f. exp(3*sin(x)).

Original entry on oeis.org

1, 3, 9, 24, 45, -24, -747, -3864, -7623, 48576, 548001, 2175360, -5269275, -133496448, -785549331, 789324288, 52523738865, 398157422592, -157735851975, -31426593116160, -278010988509411, 108354846277632, 27060485795905221, 257882404940021760
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{m = 23}, Range[0, m]! * CoefficientList[Series[Exp[3*Sin[x]], {x, 0, m}], x]] (* Amiram Eldar, Mar 26 2022 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(3*sin(x))))
    
  • PARI
    a(n) = if(n==0, 1, 3*sum(k=0, (n-1)\2, (-1)^k*binomial(n-1, 2*k)*a(n-2*k-1)));

Formula

a(0) = 1; a(n) = 3 * Sum_{k=0..floor((n-1)/2)} (-1)^k * binomial(n-1,2*k) * a(n-2*k-1).
a(n) = Sum_{k=0..n} 3^k * i^(n-k) * A136630(n,k), where i is the imaginary unit. - Seiichi Manyama, Feb 18 2025
Showing 1-3 of 3 results.