A352743 a(n) = Product_{k=1..n} (p(k+1) + p(k))/(p(k+1) - p(k)), where p(k) = prime(k).
1, 5, 20, 120, 540, 6480, 48600, 874800, 9185400, 79606800, 2388204000, 27066312000, 527793084000, 22167309528000, 498764464380000, 8312741073000000, 155171166696000000, 9310270001760000000, 198619093370880000000, 6852358721295360000000, 493369827933265920000000
Offset: 0
Keywords
Examples
a(4) = ((3+2)/(3-2))*((5+3)/(5-3))*((7+5)/(7-5))*((11+7)/(11-7)) = 540.
Links
- Amiram Eldar, Table of n, a(n) for n = 0..400
- Mauro Fiorentini, Ordowski (congettura di) (in Italian).
Programs
-
Maple
a:= proc(n) option remember; (p-> `if`(n=0, 1, a(n-1)*(p(n+1)+p(n))/(p(n+1)-p(n))))(ithprime) end: seq(a(n), n=0..20); # Alois P. Heinz, Apr 01 2022
-
Mathematica
p = Prime[Range[21]]; FoldList[Times, 1, (Rest[p] + Most[p])/(Rest[p] - Most[p])] (* Amiram Eldar, Apr 01 2022 *)
-
PARI
a(n) = my(v=primes(n+1)); prod(k=1, n, (v[k+1]+v[k])/(v[k+1]-v[k])); \\ Michel Marcus, Apr 10 2025
-
Python
from sympy import nextprime from itertools import islice def agen(): # generator of terms n, an, p, pp = 0, 1, 2, 3 while True: yield an q, r = divmod(an*(pp+p), pp-p) assert r == 0, ("Counterexample", n, p, pp) n, an, p, pp = n+1, q, pp, nextprime(pp) print(list(islice(agen(), 21))) # Michael S. Branicky, Apr 01 2022
Formula
Extensions
More terms from Amiram Eldar, Apr 01 2022
Comments