cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352743 a(n) = Product_{k=1..n} (p(k+1) + p(k))/(p(k+1) - p(k)), where p(k) = prime(k).

Original entry on oeis.org

1, 5, 20, 120, 540, 6480, 48600, 874800, 9185400, 79606800, 2388204000, 27066312000, 527793084000, 22167309528000, 498764464380000, 8312741073000000, 155171166696000000, 9310270001760000000, 198619093370880000000, 6852358721295360000000, 493369827933265920000000
Offset: 0

Views

Author

Thomas Ordowski, Apr 01 2022

Keywords

Comments

Conjecture: a(n) is an integer for every natural n. - Thomas Ordowski
Checked up to n = 10^4. - Amiram Eldar, Mar 30 2022
Checked up to n = 10^6. - Michael S. Branicky, Apr 01 2022
Note that (a(n)-1)/(a(n)+1) is the relativistic sum of the velocities prime(k)/prime(k+1) from k = 1 to n, in units where the speed of light c = 1. - Thomas Ordowski, Apr 05 2022
a(0) = 1, a(n) is the largest k such that b(n+1) = b(n)*(k + a(n-1))/(k - a(n-1)) is prime, where b(1) = 2. By my conjecture, b(n) = prime(n). - Thomas Ordowski, Jul 30 2025

Examples

			a(4) = ((3+2)/(3-2))*((5+3)/(5-3))*((7+5)/(7-5))*((11+7)/(11-7)) = 540.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; (p-> `if`(n=0, 1,
          a(n-1)*(p(n+1)+p(n))/(p(n+1)-p(n))))(ithprime)
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Apr 01 2022
  • Mathematica
    p = Prime[Range[21]]; FoldList[Times, 1, (Rest[p] + Most[p])/(Rest[p] - Most[p])] (* Amiram Eldar, Apr 01 2022 *)
  • PARI
    a(n) = my(v=primes(n+1)); prod(k=1, n, (v[k+1]+v[k])/(v[k+1]-v[k])); \\ Michel Marcus, Apr 10 2025
  • Python
    from sympy import nextprime
    from itertools import islice
    def agen(): # generator of terms
        n, an, p, pp = 0, 1, 2, 3
        while True:
            yield an
            q, r = divmod(an*(pp+p), pp-p)
            assert r == 0, ("Counterexample", n, p, pp)
            n, an, p, pp = n+1, q, pp, nextprime(pp)
    print(list(islice(agen(), 21))) # Michael S. Branicky, Apr 01 2022
    

Formula

a(n) = Product_{k=1..n} A001043(k)/A001223(k).
a(n+1) = 5 * Product_{k=1..n} A024675(k)/A028334(k+1).
Note that A024675(k) and A028334(k+1) are relatively prime.
For n >= 2, a(n) <= (prime(n)+1)*a(n-1). - Thomas Ordowski, Jul 30 2025

Extensions

More terms from Amiram Eldar, Apr 01 2022