A352881 a(n) is the minimal number z having the largest number of solutions to the Diophantine equation 1/z = 1/x + 1/y such that 1 <= x <= y <= 10^n.
2, 12, 60, 840, 9240, 55440, 720720, 6126120, 116396280, 232792560, 5354228880, 26771144400, 465817912560, 4813451763120, 24067258815600, 144403552893600, 2671465728531600, 36510031623265200, 219060189739591200, 4709794079401210800, 18839176317604843200, 221360321731856907600
Offset: 1
Keywords
Examples
For n=1, we have the following, where r = (x*y) mod (x+y). (In the last four columns, each number marked by an asterisk is a square.) . r z x y x*y x+y x*y*z x^2+y^2+z^2 - - - - --- --- ----- ----------- 0 1 2 2 4* 4* 4* 9* (solution) 2 1 2 4 8 6 8 21 4 1 2 6 12 8 12 41 6 1 2 8 16* 10 16* 69 3 1 3 3 9 6 9* 19 0 2 3 6 18* 9* 36* 49* (solution) 3 2 3 9 27 12 54 94 0 2 4 4 16* 8 32 36* (solution) 8 2 4 8 32 12 64* 84 5 2 5 5 25* 10 50 54 0 3 6 6 36* 12 108 81* (solution) 7 3 7 7 49* 14 147 107 0 4 8 8 64* 16* 256* 144* (solution) 9 4 9 9 81* 18 324* 178 . z = 2 has the largest number of solutions, so a(1) = 2. The number of solutions for the resulting z cannot exceed A018892(z).
Links
- Max Alekseyev, Table of n, a(n) for n = 1..30
- Project Euler, Diophantine reciprocals I, Problem 108.
Programs
-
PARI
a(n)=my(bc=0,bk=0,L=10^n);for(k=1,L-1,my(c=0,k2=k^2);for(d=max(1,k2\(L-k)+1),k,if(k2%d==0,c++););if(c>bc,bc=c;bk=k););return(bk); \\ Darío Clavijo, Mar 03 2025
-
Python
def a(n): # k=x*y and d=x+y bc, bk, L = 0, None, 10**n for k in range(1, L): c, k2 = 0, k * k for d in range(max(1, k2 // (L - k) + 1), k + 1): if k2 % d == 0: c += 1 if c > bc: bc, bk = c, k return bk
Extensions
a(6) from Chai Wah Wu, Apr 10 2022
a(7)-a(22) from Max Alekseyev, Mar 01 2023
Comments