cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A351632 Number of copies of the star graph S(2,1,1,1) contained in the n-dimensional hypercube graph.

Original entry on oeis.org

0, 0, 0, 192, 2560, 19200, 107520, 501760, 2064384, 7741440, 27033600, 89210880, 281149440, 852819968, 2504785920, 7156531200, 19964887040, 54546923520, 146314100736, 386106654720, 1004116377600, 2577232035840, 6536738897920, 16401272143872, 40748502220800
Offset: 1

Views

Author

Ben Eck, May 04 2022

Keywords

Comments

The star graph S(2,1,1,1) is the unique tree with degree sequence 4,2,1,1,1,1.

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^n * Binomial[n, 3] * (n - 1) * (n - 3); Array[a, 25] (* Amiram Eldar, May 23 2022 *)
  • PARI
    a(n) = 2^n*binomial(n,3)*(n-1)*(n-3); \\ Michel Marcus, May 23 2022
  • Python
    from math import comb
    def a(n):
        return (2**n)*comb(n, 3)*(n-3)*(n-1)
    

Formula

a(n) = 2^n*binomial(n,3)*(n-1)*(n-3).
G.f.: 64*x^4*(3 + 4*x)/(1 - 2*x)^6. - Stefano Spezia, May 20 2022
Sum_{n>=4} 1/a(n) = Pi^2/8 + 17*log(2)/16 - 3*log(2)^2/4 - 77/48. - Amiram Eldar, May 23 2022

A353029 Number of copies of the star graph S(2,2,2) contained in the n-dimensional hypercube graph.

Original entry on oeis.org

0, 0, 16, 1152, 16640, 140800, 887040, 4616192, 20987904, 86261760, 327782400, 1169653760, 3964207104, 12869828608, 40285306880, 122211532800, 360794030080, 1040028008448, 2935426646016, 8130951905280, 22146344550400, 59411980615680, 157208570494976
Offset: 1

Views

Author

Ben Eck, Apr 20 2022

Keywords

Comments

S(2,2,2) is the star graph with three legs of length two.

Crossrefs

Programs

  • Python
    from math import comb
    def a(n):
        return (2**n)*comb(n,3)*((n-1)**3-3*(n-1))

Formula

a(n) = 2^n*C(n,3)*((n-1)^3 - 3*(n-1)).
G.f.: 16*x^3*(1 + 58*x + 116*x^2 + 8*x^3)/(1 - 2*x)^7. - Stefano Spezia, Apr 20 2022
Showing 1-2 of 2 results.