Ben Eck has authored 4 sequences.
A353029
Number of copies of the star graph S(2,2,2) contained in the n-dimensional hypercube graph.
Original entry on oeis.org
0, 0, 16, 1152, 16640, 140800, 887040, 4616192, 20987904, 86261760, 327782400, 1169653760, 3964207104, 12869828608, 40285306880, 122211532800, 360794030080, 1040028008448, 2935426646016, 8130951905280, 22146344550400, 59411980615680, 157208570494976
Offset: 1
A351632
Number of copies of the star graph S(2,1,1,1) contained in the n-dimensional hypercube graph.
Original entry on oeis.org
0, 0, 0, 192, 2560, 19200, 107520, 501760, 2064384, 7741440, 27033600, 89210880, 281149440, 852819968, 2504785920, 7156531200, 19964887040, 54546923520, 146314100736, 386106654720, 1004116377600, 2577232035840, 6536738897920, 16401272143872, 40748502220800
Offset: 1
-
a[n_] := 2^n * Binomial[n, 3] * (n - 1) * (n - 3); Array[a, 25] (* Amiram Eldar, May 23 2022 *)
-
a(n) = 2^n*binomial(n,3)*(n-1)*(n-3); \\ Michel Marcus, May 23 2022
-
from math import comb
def a(n):
return (2**n)*comb(n, 3)*(n-3)*(n-1)
A352994
Number of copies of the star graph S(2,2,1) contained within the n-dimensional hypercube graph.
Original entry on oeis.org
0, 0, 72, 1536, 14400, 92160, 470400, 2064384, 8128512, 29491200, 100362240, 324403200, 1005109248, 3005743104, 8722022400, 24662507520, 68183654400, 184817811456, 492285984768, 1291006771200, 3338686955520, 8526181171200, 21526669688832, 53788022931456
Offset: 1
-
a[n_] := (2^n)*Binomial[n,3]*3*n*(n-2); Array[a, 24] (* Amiram Eldar, Apr 22 2022 *)
-
from math import comb
def a(n):
return (2**n)*comb(n,3)*3*n*(n-2)
A352847
Number of copies of the star graph S(2,1,1) contained within the n-dimensional hypercube graph.
Original entry on oeis.org
0, 0, 48, 576, 3840, 19200, 80640, 301056, 1032192, 3317760, 10137600, 29736960, 84344832, 232587264, 626196480, 1651507200, 4278190080, 10909384704, 27433893888, 68136468480, 167352729600, 406931374080, 980510834688, 2343038877696, 5556613939200
Offset: 1
-
a[n_] := (2^n)*Binomial[n,2]*(n-1)*(n-2); Array[a, 25] (* Amiram Eldar, Apr 22 2022 *)
-
from math import comb
def a(n):
return (2**n)*comb(n,2)*(n-2)*(n-1)
Comments