A353007 Nonnegative integers in which any odd digit, if present, occurs an even number of times, and any even digit, if present, occurs an odd number of times.
0, 2, 4, 6, 8, 11, 20, 24, 26, 28, 33, 40, 42, 46, 48, 55, 60, 62, 64, 68, 77, 80, 82, 84, 86, 99, 101, 110, 112, 114, 116, 118, 121, 141, 161, 181, 204, 206, 208, 211, 222, 233, 240, 246, 248, 255, 260, 264, 268, 277, 280, 284, 286, 299, 303, 323, 330, 332, 334
Offset: 1
Examples
181 is a 3-digit term because it has two 1's and one 8.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A333369.
Programs
-
Maple
filter:= proc(n) local L; L:= map(rhs-lhs,Statistics:-Tally(convert(n,base,10))); andmap(type,L,odd) end proc: select(filter, [$0..1000]); # Robert Israel, Jul 31 2024
-
Mathematica
q[n_] := AllTrue[Tally @ IntegerDigits[n], OddQ[Plus @@ #] &]; Select[Range[0, 300], q] (* Amiram Eldar, Apr 15 2022 *)
-
PARI
isok(m) = my(d=digits(m), s=Set(d)); for (i=1, #s, if (#select(x->(x==s[i]), d) % 2 == (s[i] % 2), return (0))); return (1); \\ Michel Marcus, Apr 15 2022
-
Python
def ok(n): s = str(n); return all(s.count(d)%2 != int(d)%2 for d in set(s)) print([k for k in range(335) if ok(k)]) # Michael S. Branicky, Apr 15 2022
Comments