cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A353736 Number of n-digit terms in A353007.

Original entry on oeis.org

5, 21, 122, 765, 5000, 34581, 249152, 1843485, 14184320, 111117141, 890892032, 7338139005, 60554071040, 518102719701, 4409318285312, 38356828343325, 341939662684160, 2933245707834261, 28085287524564992, 229163829314312445, 2425706018857287680, 18151248585662332821
Offset: 1

Views

Author

Michael S. Branicky, May 06 2022

Keywords

Comments

From Bernard Schott, Jul 14 2022: (Start)
Conjecture 1: lim_{n->oo} a(2n+1)/a(2n-1) = 100.
Conjecture 2: lim_{n->oo} a(2n+2)/a(2n) = 81.
These conjectures are the same as for A353735. (End)

Examples

			There are five 1-digit terms in A353007: 0, 2, 4, 6, 8. Thus, a(1) = 5.
		

Crossrefs

Programs

  • Python
    def isA353007(n):
        digits = list(map(int, str(n)))
        return all(digits.count(d)%2 != d%2 for d in set(digits))
    def a(n):
        start = 0 if n == 1 else 10**(n-1)
        return sum(1 for i in range(start, 10**n) if isA353007(i))
    print([a(n) for n in range(1, 7)]) # Michael S. Branicky, May 06 2022

A333369 Positive integers in which any odd digit, if present, occurs an odd number of times, and any even digit, if present, occurs an even number of times.

Original entry on oeis.org

1, 3, 5, 7, 9, 13, 15, 17, 19, 22, 31, 35, 37, 39, 44, 51, 53, 57, 59, 66, 71, 73, 75, 79, 88, 91, 93, 95, 97, 100, 111, 122, 135, 137, 139, 144, 153, 157, 159, 166, 173, 175, 179, 188, 193, 195, 197, 212, 221, 223, 225, 227, 229, 232, 252, 272, 292, 300, 315, 317, 319, 322
Offset: 1

Views

Author

Bernard Schott, Mar 17 2020

Keywords

Comments

Inspired by the 520th problem of Project Euler (see link) where such a number is called a "simber".
This sequence has little mathematical interest. The name "simber", which might be interpreted as "silly number", is deprecated. - N. J. A. Sloane, Aug 04 2022
The number of terms with respectively 1, 2, 3, ... digits is 5, 24, 130, ...

Examples

			656 is a 3-digit term because it has one 5 and two 6's.
447977 is a 6-digit term because it has one 9, two 4's and three 7's.
		

Crossrefs

Cf. A108571 (finite subsequence), A353007.

Programs

  • Mathematica
    seqQ[n_] := AllTrue[Tally @ IntegerDigits[n], EvenQ[Plus @@ #] &]; Select[Range[300], seqQ] (* Amiram Eldar, Mar 17 2020 *)
  • PARI
    isok(m) = my(d=digits(m), s=Set(d)); for (i=1, #s, if (#select(x->(x==s[i]), d) % 2 != (s[i] % 2), return (0))); return (1); \\ Michel Marcus, Mar 17 2020
    
  • Python
    def ok(n): s = str(n); return all(s.count(d)%2 == int(d)%2 for d in set(s))
    print([k for k in range(323) if ok(k)]) # Michael S. Branicky, Apr 15 2022

A353735 Number of n-digit terms in A333369.

Original entry on oeis.org

5, 24, 130, 792, 5080, 34584, 247360, 1817112, 13918720, 108848664, 869866240, 7169995032, 59085276160, 505735077144, 4311229112320, 37428004374552, 335520388710400, 2861870689152024, 27669446179225600, 223578655251963672, 2398913308953149440, 17708639883984065304
Offset: 1

Views

Author

Michael S. Branicky, May 06 2022

Keywords

Comments

Also the number of n-digit simbers, where a simber is a positive integer in which any odd digit, if present, occurs an odd number of times, and any even digit, if present, occurs an even number of times.

Examples

			There are five 1-digit terms in A333369: 1, 3, 5, 7, 9. Thus, a(1) = 5.
		

Crossrefs

Programs

  • Python
    def isA333369(n):
        digits = list(map(int, str(n)))
        return all(digits.count(d)%2 == d%2 for d in set(digits))
    def a(n): return sum(1 for i in range(10**(n-1), 10**n) if isA333369(i))
    print([a(n) for n in range(1, 7)]) # Michael S. Branicky, May 06 2022

Formula

From Bernard Schott, Jul 11 2022: (Start)
Conjecture 1: lim_{n->oo} a(2n+1)/a(2n-1) = 100.
Conjecture 2: lim_{n->oo} a(2n+2)/a(2n) = 81. (End)
Showing 1-3 of 3 results.