A353078 Inverse Moebius transform of odd primes.
3, 8, 10, 19, 16, 32, 22, 42, 39, 52, 40, 84, 46, 74, 76, 101, 64, 128, 74, 136, 108, 128, 92, 204, 117, 154, 146, 194, 116, 256, 134, 238, 186, 218, 186, 337, 166, 246, 226, 338, 184, 368, 196, 336, 304, 308, 226, 490, 251, 386, 310, 406, 254, 492, 316, 486, 352, 398, 284, 664
Offset: 1
Keywords
Programs
-
Mathematica
nmax = 60; CoefficientList[Series[Sum[Prime[k + 1] x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest Table[DivisorSum[n, Prime[# + 1] &], {n, 1, 60}]
-
PARI
a(n) =sumdiv(n, d, prime(d+1)); \\ Michel Marcus, Apr 22 2022
Formula
G.f.: Sum_{k>=1} prime(k+1) * x^k / (1 - x^k).
a(n) = Sum_{d|n} prime(d+1).