cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353079 Exponential transform of odd primes.

Original entry on oeis.org

1, 3, 14, 79, 521, 3876, 31935, 287225, 2791122, 29066589, 322292257, 3784650052, 46857941291, 609360372095, 8296220760974, 117914344818807, 1745211622467633, 26838798853062516, 428009369349905497, 7065576909286562195, 120545067517808693300, 2122393931891338237325, 38512344746420591905771
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 22 2022

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*
          ithprime(j+1)*binomial(n-1, j-1), j=1..n))
        end:
    seq(a(n), n=0..22);  # Alois P. Heinz, Apr 27 2022
  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[Sum[Prime[k + 1] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] Prime[k + 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]

Formula

E.g.f.: exp( Sum_{k>=1} prime(k+1) * x^k / k! ).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * prime(k+1) * a(n-k).