cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353152 Perfect powers that are divisible by 5.

Original entry on oeis.org

25, 100, 125, 225, 400, 625, 900, 1000, 1225, 1600, 2025, 2500, 3025, 3125, 3375, 3600, 4225, 4900, 5625, 6400, 7225, 8000, 8100, 9025, 10000, 11025, 12100, 13225, 14400, 15625, 16900, 18225, 19600, 21025, 22500, 24025, 25600, 27000, 27225, 28900, 30625
Offset: 1

Views

Author

Marco RipĂ , Apr 26 2022

Keywords

Comments

a(n) == 0 (mod 25).
a(n) == {0, 25, 75} (mod 100).

Examples

			225 is a term since 225 = 15^2 is a power of a multiple of 5.
		

Crossrefs

Intersection of A001597 and A008587.
Cf. A075090 (even perfect powers).

Programs

  • Mathematica
    Select[Range[32000], And[GCD @@ FactorInteger[#][[All, 2]] > 1, Divisible[#, 5]] &] (* Michael De Vlieger, Apr 30 2022 *)
  • PARI
    isok(k) = ispower(k) && !(k%5); \\ Michel Marcus, Apr 27 2022
    
  • PARI
    upto(n) = { my(res = List()); forstep(i = 5, sqrtint(n), 5, c = i; for(e = 2, logint(n, i), c*=i; listput(res, c) ) ); Set(res) } \\ David A. Corneth, Apr 27 2022

Formula

a(n) = (5*m)^k for some positive m and some k > 1. - David A. Corneth, Apr 28 2022
Sum_{n>=1} 1/a(n) = -Sum_{k>=2} mu(k)*zeta(k)/5^k = 0.0756933503... - Amiram Eldar, Jul 02 2022