A353182 Number of n-digit numbers in which more than half of the digits are the same.
9, 9, 252, 333, 7704, 11430, 245520, 388485, 8018280, 13221234, 266135472, 451623042, 8935693776, 15488764524, 302623991712, 533189070405, 10317992397480, 18416195186490, 353689409441520, 637974569854998, 12177584747670384, 22158431087271444, 420819143651579232, 771390571080374658
Offset: 1
Examples
a(2)=9 because there are 9 numbers whose digits are the same, more than half of the length 2.
Links
- Zhining Yang, Table of n, a(n) for n = 1..300
- Project Euler, Problem 788, Dominating Numbers
Programs
-
Mathematica
a[n_]:=Sum[Binomial[n,k]9^(n-k+1),{k,Floor[n/2]+1,n}]; Array[a,24] (* Stefano Spezia, Apr 29 2022 *)
-
Python
import math def a(n): return (sum(math.comb(n,i)*9**(n-i+1) for i in range(n//2+1,n+1))) print([a(n) for n in range(1, 31)])
-
Python
def a(n): r=[0, 9, 9] for i in range(n): r.append(-((5400+8280*i+2880*i*i)*r[i]+(-360-828*i-288*i*i)*r[i+1]+(-228-310*i-80*i*i)*r[i+2])//(21+31*i+8*i*i)) return r[n] print([a(i) for i in range(1, 21)]) # Xianwen Wang, May 02 2022
Formula
a(n) = Sum_{k=floor(n/2)+1..n} C(n,k)*9^(n-k+1) (thanks to Zhao Hui Du for help in the derivation of this formula).
a(n+3) = (-(5400+8280*n+2880*n^2)*a(n)+(360+828*n+288*n^2)*a(n+1)+(228+310*n+80*n^2)*a(n+2))/(21+31*n+8*n^2) (thanks to Xianwen Wang for help in the derivation of this formula).
Comments