cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A205801 Expansion of e.g.f. exp( Sum_{n>=1} x^(n^2) / (n^2) ).

Original entry on oeis.org

1, 1, 1, 1, 7, 31, 91, 211, 1681, 52417, 461161, 2427481, 10744471, 219643711, 2619643027, 18939628891, 1410692293921, 23943786881281, 263853697605841, 2237281161036337, 53316533506210471, 900164075618402911, 11265158441537890891, 112769404714319769571
Offset: 0

Views

Author

Paul D. Hanna, Jan 31 2012

Keywords

Comments

Number of permutations of [n] whose cycle lengths are squares. - Alois P. Heinz, May 12 2016

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + x^3/3! + 7*x^4/4! + 31*x^5/5! + 91*x^6/6! +...
where
log(A(x)) = x + x^4/4 + x^9/9 + x^16/16 + x^25/25 + x^36/36 +...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(`if`(issqr(j),
           a(n-j)*(j-1)!*binomial(n-1, j-1), 0), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, May 12 2016
  • Mathematica
    a[n_] := a[n] = If[n==0, 1, Sum[If[IntegerQ @ Sqrt[j], a[n-j]*(j-1)! * Binomial[n-1, j-1], 0], {j, 1, n}]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 19 2017, after Alois P. Heinz *)
    nmax = 25; CoefficientList[Series[Product[1/(1 - x^k)^(LiouvilleLambda[k]/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 17 2019 *)
  • PARI
    {a(n)=n!*polcoeff(exp(sum(m=1, sqrtint(n+1), x^(m^2)/(m^2)+x*O(x^n))), n)}
    
  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=1, sqrtint(n), a(n-k^2)/(n-k^2)!)); \\ Seiichi Manyama, Apr 29 2022

Formula

The e.g.f. A(x)=1+a(1)x+a(2)x^2/2!+... is equal to the power series expansion of the product of (1-x^n)^{-lambda(n)/n} (n=1,2,...) where lambda(n) is the Liouville function A008836 (follows easily from the Lambert series of lambda(n) - see e. g., the Wikipedia link). - Mamuka Jibladze, Jan 12 2014
a(0) = 1; a(n) = (n-1)! * Sum_{k=1..floor(sqrt(n))} a(n-k^2)/(n-k^2)!. - Seiichi Manyama, Apr 29 2022

A353180 Expansion of e.g.f. 1/(1 - Sum_{k>=1} x^(k^2) / (k^2)!).

Original entry on oeis.org

1, 1, 2, 6, 25, 130, 810, 5880, 48790, 455491, 4725020, 53915730, 671141130, 9050528630, 131437406100, 2045160117000, 33944105995801, 598591246152934, 11176863039391538, 220287874849834596, 4570225746232479690, 99557506547622369750, 2272028399094852806100
Offset: 0

Views

Author

Seiichi Manyama, Apr 29 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k^2] * a[n - k^2], {k, 1, Floor@Sqrt[n]}]; Array[a, 23, 0] (* Amiram Eldar, Apr 30 2022 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, sqrtint(N), x^k^2/(k^2)!))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, sqrtint(i), binomial(i, j^2)*v[i-j^2+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..floor(sqrt(n))} binomial(n,k^2) * a(n-k^2).
Showing 1-2 of 2 results.