cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A353314 If n is of the form 3k, then a(n) = n, and if n is of the form 3k+r, with r = 1 or 2, then a(n) = 5*k + 3 + r.

Original entry on oeis.org

0, 4, 5, 3, 9, 10, 6, 14, 15, 9, 19, 20, 12, 24, 25, 15, 29, 30, 18, 34, 35, 21, 39, 40, 24, 44, 45, 27, 49, 50, 30, 54, 55, 33, 59, 60, 36, 64, 65, 39, 69, 70, 42, 74, 75, 45, 79, 80, 48, 84, 85, 51, 89, 90, 54, 94, 95, 57, 99, 100, 60, 104, 105, 63, 109, 110, 66, 114, 115, 69, 119, 120, 72, 124, 125, 75, 129, 130
Offset: 0

Views

Author

Antti Karttunen, Apr 14 2022

Keywords

Crossrefs

Cf. A353313 (variant), A349876 (the first multiple of 3 reached when iterating this sequence), A349877 (number of iterations to reach the first multiple of 3), A353327 (A102899).

Programs

  • Mathematica
    Array[If[#2 == 0, #1, 5 #1 + 3 + #2 & @@ QuotientRemainder[#1, 3]] & @@ {#, Mod[#, 3]} &, 78, 0] (* Michael De Vlieger, Apr 14 2022 *)
  • PARI
    A353314(n) = { my(r=(n%3)); if(!r,n,((5*((n-r)/3)) + r + 3)); };

Formula

a(n) = n + A353327(n) = n + A102899(3+n).
From Chai Wah Wu, Jul 27 2022: (Start)
a(n) = 2*a(n-3) - a(n-6) for n > 5.
G.f.: x*(x^3 + 3*x^2 + 5*x + 4)/(x^6 - 2*x^3 + 1). (End)

A102899 a(n) = ceiling(n/3)^2 - floor(n/3)^2.

Original entry on oeis.org

0, 1, 1, 0, 3, 3, 0, 5, 5, 0, 7, 7, 0, 9, 9, 0, 11, 11, 0, 13, 13, 0, 15, 15, 0, 17, 17, 0, 19, 19, 0, 21, 21, 0, 23, 23, 0, 25, 25, 0, 27, 27, 0, 29, 29, 0, 31, 31, 0, 33, 33, 0, 35, 35, 0, 37, 37, 0, 39, 39, 0, 41, 41, 0, 43, 43, 0, 45, 45, 0, 47, 47, 0, 49, 49, 0, 51, 51, 0, 53, 53, 0
Offset: 0

Views

Author

Paul Barry, Jan 17 2005

Keywords

Comments

If n is a multiple of 3, then a(n) = 0, and if n is of the form 3k+r, with r = 1 or 2, then a(n) = 2*k + 1. - Antti Karttunen, Apr 14 2022

References

  • Maria Paola Bonacina and Nachum Dershowitz, Canonical Inference for Implicational Systems, in Automated Reasoning, Lecture Notes in Computer Science, Volume 5195/2008, Springer-Verlag.

Crossrefs

Programs

  • Magma
    I:=[0,1,1,0,3,3]; [n le 6 select I[n] else 2*Self(n-3) - Self(n-6): n in [1..91]]; // G. C. Greubel, Dec 09 2022
    
  • Mathematica
    LinearRecurrence[{0,0,2,0,0,-1}, {0,1,1,0,3,3}, 90] (* G. C. Greubel, Dec 09 2022 *)
  • PARI
    A102899(n)=(n\3*2+1)*(0M. F. Hasler, Dec 13 2007
    
  • SageMath
    def A102899(n): return (1+2*(n//3))*((n%3)>0)
    [A102899(n) for n in range(91)] # G. C. Greubel, Dec 09 2022

Formula

G.f.: x*(1+x+x^3+x^4)/(1-2*x^3+x^6).
a(n) = A011655(n)*A004396(n).
a(n) = (2/3)*floor((2*n+1)/3)*(1-cos(2*Pi*n/3)).
From M. F. Hasler, Dec 13 2007: (Start)
a(n) = |A120691(n+1)| for n>0.
a(n) = ([n/3]*2 + 1)*dist(n,3Z). (End)
a(n) = 2*sin(n*Pi/3)*(4*n*sin(n*Pi/3)-sqrt(3)*cos(n*Pi))/9. - Wesley Ivan Hurt, Sep 24 2017
a(n) = 2*a(n-3) - a(n-6), for n > 5. - Chai Wah Wu, Jul 27 2022
Showing 1-2 of 2 results.