A353532
T(n,m) is the number of non-congruent quadrilaterals with integer vertex coordinates (x1,1), (n,y2), (x3,m), (1,y4), 1 < x1, x3 < n, 1 < y2, y4 < m, m <= n, such that the 6 distances between the 4 vertices are distinct.
Original entry on oeis.org
0, 0, 0, 0, 3, 1, 1, 7, 12, 11, 1, 11, 26, 52, 40, 4, 23, 50, 94, 147, 105, 4, 30, 69, 127, 198, 301, 190, 10, 49, 103, 192, 302, 444, 583, 379, 10, 58, 127, 244, 387, 576, 754, 1039, 616, 18, 84, 180, 329, 509, 756, 989, 1334, 1680, 987, 18, 94, 209, 389, 611, 910, 1203, 1618, 2052, 2581, 1426
Offset: 3
The triangle begins
\ m 3 4 5 6 7 8 9 10
n \-------------------------------------
3 | 0, | | | | | | |
4 | 0, 0, | | | | | |
5 | 0, 3, 1, | | | | |
6 | 1, 7, 12, 11, | | | |
7 | 1, 11, 26, 52, 40, | | |
8 | 4, 23, 50, 94, 147, 105, | |
9 | 4, 30, 69, 127, 198, 301, 190, |
10 | 10, 49, 103, 192, 302, 444, 583, 379
.
.
4 | . C . . . There are six squared distances.
3 | . . . . . They are arranged as follows:
2 | D . . . B AB-BC-CD-DA (counterclockwise)
1 | . A . . . AC X DB (across)
y /---------- Here: AB = 3^2 + 1^2 = 10,
x 1 2 3 4 5 BC = 13, CD = 5, DA = 2,
. AC = 9, DB = 16
10-13-5-2 <==== yielding this
9 X 16 <==== description
.
.
T(5,4) = a(5) = 3:
.
4 | . X . . . 4 | . X . . . 4 | . . X . .
3 | . . . . . 3 | . . . . X 3 | . . . . X
2 | X . . . X 2 | X . . . . 2 | X . . . .
1 | . X . . . 1 | . X . . . 1 | . X . . .
y /---------- y /---------- y /----------
x 1 2 3 4 5 x 1 2 3 4 5 x 1 2 3 4 5
.
10-13-5-2 13-10-5-2 13-5-8-2
9 X 16 9 X 17 10 X 17
.
T(5,5) = a(6) = A353447(5) = 1:
.
5 | . . . X .
4 | . . . . .
3 | . . . . X 13-5-18-2
2 | X . . . . 20 X 17
1 | . X . . .
y /----------
x 1 2 3 4 5
.
T(6,3) = a(7) = 1:
.
3 | . . . X . .
2 | X . . . . X 17-5-10-2
1 | . X . . . . 8 X 25
y /------------
x 1 2 3 4 5 6
.
T(6,4) = a(8) = 7:
.
4 | . X . . . . 4 | . X . . . . 4 | . . X . . . 4 | . . . X . .
3 | . . . . . . 3 | . . . . . X 3 | . . . . . . 3 | X . . . . .
2 | X . . . . X 2 | X . . . . . 2 | X . . . . X 2 | . . . . . X
1 | . X . . . . 1 | . X . . . . 1 | . X . . . . 1 | . X . . . .
y /------------ y /------------ y /------------ y /------------
x 1 2 3 4 5 6 x 1 2 3 4 5 6 x 1 2 3 4 5 6 x 1 2 3 4 5 6
.
17-20-5-2 20-17-5-2 17-13-8-2 17-8-10-5
9 X 25 9 X 26 10 X 25 13 X 26
.
4 | . . . . X . 4 | . . X . . . 4 | . . X . . .
3 | . . . . . . 3 | . . . . . . 3 | . . . . . X
2 | X . . . . X 2 | X . . . . X 2 | X . . . . .
1 | . X . . . . 1 | . . X . . . 1 | . . X . . .
y /------------ y /------------ y /------------
x 1 2 3 4 5 6 x 1 2 3 4 5 6 x 1 2 3 4 5 6
.
17-5-20-2 10-13-8-5 13-10-8-5
18 X 25 9 X 25 9 X 26
.
The general case without excluding the corners of the grid rectangle is covered in
A354700 and
A354701.
A353449
T(n,m) is the number of non-congruent quadrilaterals with integer vertex coordinates (x1,1), (n,y2), (x3,m), (1,y4), 1 < x1, x3 < n, 1 < y2, y4 < m, m <= n, such that the 6 distances between the 4 vertices are distinct and (x3-x1)*(y4-y2) > 0, where T(n,m) is a triangle read by rows.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 1, 8, 15, 12, 0, 3, 16, 27, 49, 29, 0, 7, 21, 44, 71, 103, 66, 0, 9, 30, 61, 106, 152, 216, 131, 0, 13, 41, 80, 145, 213, 298, 404, 245, 0, 17, 55, 106, 189, 279, 383, 507, 677, 373, 0, 22, 69, 135, 228, 345, 485, 641, 848, 1054, 576
Offset: 3
The triangle begins
\ m 3 4 5 6 7 8 9 10
n \-------------------------------------
3 | 0 | | | | | | |
4 | 0, 0 | | | | | |
5 | 0, 0, 0 | | | | |
6 | 0, 1, 2, 2 | | | |
7 | 0, 1, 8, 15, 12 | | |
8 | 0, 3, 16, 27, 49, 29 | |
9 | 0, 7, 21, 44, 71, 103, 66 |
10 | 0, 9, 30, 61, 106, 152, 216, 131
.
T(6,4) = 1 because of the third example for (6,4) in A353532:
.
4 | . . . C . .
3 | D . . . . . A = (x1,1) = (2,1), B = (6,y2) = (6,2)
2 | . . . . . B C = (x3,4) = (4,4), D = (1,y4) = (1,3)
1 | . A . . . .
y /------------ (x3-x1) * (y4-y2) = (4-2)*(3-2) > 0
x 1 2 3 4 5 6
.
Spokes AC and BD are tilted in the same direction, to the right. The signs of the slopes are unequal: AC has positive slope, and DB has negative slope.
A353450
T(n,m) is the number of non-congruent quadrilaterals with integer vertex coordinates (x1,1), (n,y2), (x3,m), (1,y4), 1 < x1, x3 < n, 1 < y2, y4 < m, m <= n, such that the 6 distances between the 4 vertices are distinct and (x3-x1)*(y4-y2) < 0, where T(n,m) is a triangle read by rows.
Original entry on oeis.org
0, 0, 0, 0, 1, 1, 0, 0, 4, 5, 0, 2, 8, 18, 16, 0, 5, 14, 28, 50, 36, 0, 7, 23, 42, 75, 109, 77, 0, 10, 34, 65, 110, 157, 223, 143, 0, 14, 45, 89, 151, 223, 314, 423, 265, 0, 18, 58, 116, 186, 274, 386, 519, 684, 400, 0, 23, 73, 145, 239, 355, 491, 652, 870, 1069, 622
Offset: 3
The triangle begins
\ m 3 4 5 6 7 8 9 10
n \-------------------------------------
3 | 0 | | | | | | |
4 | 0, 0 | | | | | |
5 | 0, 1, 1 | | | | |
6 | 0, 0, 4, 5 | | | |
7 | 0, 2, 8, 18, 16 | | |
8 | 0, 5, 14, 28, 50, 36 | |
9 | 0, 7, 23, 42, 75, 109, 77 |
10 | 0, 10, 34, 65, 110, 157, 223, 143
.
T(5,4) = 1 because of the third example for (5,4) in A353532.
.
4 | . . C . .
3 | . . . . B A = (x1,1) = (2,1), B = (5,y2) = (5,3)
2 | D . . . . C = (x3,4) = (3,4), D = (1,y4) = (1,2)
1 | . A . . .
y /---------- (x3-x1) * (y4-y2) = (3-2)*(2-3) < 0
x 1 2 3 4 5
.
Spokes AC and BD are tilted in different directions ("contrasense"). AC has positive slope and is tilted to the right (clockwise), DB also has same sign of slope, but is tilted to the left (counterclockwise).
.
T(5,5) = 1 because of the third example for (5,5) in A353532.
.
5 | . . . C .
4 | . . . . . A = (x1,1) = (2,1), B = (5,y2) = (5,3)
3 | . . . . B C = (x3,5) = (4,5), D = (1,y4) = (1,2)
2 | D . . . .
1 | . A . . . (x3-x1) * (y4-y2) = (4-2)*(2-3) < 0
y /----------
x 1 2 3 4 5
.
Spokes AC and DB are tilted in different directions ("contrasense") like in the example before.
Showing 1-3 of 3 results.
Comments