A353506 Number of integer partitions of n whose parts have the same product as their multiplicities.
1, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 1, 2, 1, 2, 0, 3, 3, 2, 3, 2, 0, 2, 3, 2, 1, 3, 1, 6, 3, 2, 3, 3, 2, 3, 4, 1, 2, 3, 6, 3, 2, 2, 3, 3, 1, 2, 6, 6, 4, 7, 2, 3, 6, 4, 3, 3, 0, 4, 5, 3, 5, 5, 6, 5, 3, 3, 3, 6, 5, 5, 6, 6, 3, 3, 3, 4, 4, 4, 6, 7, 2, 5, 7, 6, 2, 3, 4, 6, 11, 9, 4, 4, 1, 5, 6, 4, 7, 9, 6, 4
Offset: 0
Keywords
Examples
The a(0) = 1 through a(18) = 2 partitions: n= 0: () n= 1: (1) n= 2: n= 3: n= 4: (211) n= 5: n= 6: (3111) (2211) n= 7: n= 8: (41111) n= 9: n=10: (511111) n=11: (32111111) n=12: (6111111) (22221111) n=13: (322111111) n=14: (71111111) (4211111111) n=15: n=16: (811111111) (4411111111) (42211111111) n=17: (521111111111) (332111111111) (322211111111) n=18: (9111111111) (333111111111) For example, the partition y = (322111111) has multiplicities (1,2,6) with product 12, and the product of parts is also 3*2*2*1*1*1*1*1*1 = 12, so y is counted under a(13).
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], Times@@#==Times@@Length/@Split[#]&]],{n,0,30}]
-
PARI
a(n) = {my(nb=0); forpart(p=n, my(s=Set(p), v=Vec(p)); if (vecprod(vector(#s, i, #select(x->(x==s[i]), v))) == vecprod(v), nb++);); nb;} \\ Michel Marcus, May 20 2022
Extensions
a(71)-a(100) from Alois P. Heinz, May 20 2022