cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353532 T(n,m) is the number of non-congruent quadrilaterals with integer vertex coordinates (x1,1), (n,y2), (x3,m), (1,y4), 1 < x1, x3 < n, 1 < y2, y4 < m, m <= n, such that the 6 distances between the 4 vertices are distinct.

Original entry on oeis.org

0, 0, 0, 0, 3, 1, 1, 7, 12, 11, 1, 11, 26, 52, 40, 4, 23, 50, 94, 147, 105, 4, 30, 69, 127, 198, 301, 190, 10, 49, 103, 192, 302, 444, 583, 379, 10, 58, 127, 244, 387, 576, 754, 1039, 616, 18, 84, 180, 329, 509, 756, 989, 1334, 1680, 987, 18, 94, 209, 389, 611, 910, 1203, 1618, 2052, 2581, 1426
Offset: 3

Views

Author

Hugo Pfoertner and Rainer Rosenthal, May 02 2022

Keywords

Comments

T(n,m) is a triangle, read by rows.

Examples

			The triangle begins
    \ m 3   4    5    6    7    8    9   10
   n \-------------------------------------
   3 |  0,  |    |    |    |    |    |    |
   4 |  0,  0,   |    |    |    |    |    |
   5 |  0,  3,   1,   |    |    |    |    |
   6 |  1,  7,  12,  11,   |    |    |    |
   7 |  1, 11,  26,  52,  40,   |    |    |
   8 |  4, 23,  50,  94, 147, 105,   |    |
   9 |  4, 30,  69, 127, 198, 301, 190,   |
  10 | 10, 49, 103, 192, 302, 444, 583, 379
.
.
   4 | . C . . .    There are six squared distances.
   3 | . . . . .    They are arranged as follows:
   2 | D . . . B      AB-BC-CD-DA  (counterclockwise)
   1 | . A . . .      AC X DB      (across)
   y /----------    Here: AB = 3^2 + 1^2 = 10,
     x 1 2 3 4 5          BC = 13, CD = 5, DA = 2,
.                         AC =  9, DB = 16
      10-13-5-2  <==== yielding this
      9 X 16     <==== description
.
.
T(5,4) = a(5) = 3:
.
   4 | . X . . .     4 | . X . . .     4 | . . X . .
   3 | . . . . .     3 | . . . . X     3 | . . . . X
   2 | X . . . X     2 | X . . . .     2 | X . . . .
   1 | . X . . .     1 | . X . . .     1 | . X . . .
   y /----------     y /----------     y /----------
     x 1 2 3 4 5       x 1 2 3 4 5       x 1 2 3 4 5
.
      10-13-5-2          13-10-5-2          13-5-8-2
      9 X 16             9 X 17             10 X 17
.
T(5,5) = a(6) = A353447(5) = 1:
.
   5 | . . . X .
   4 | . . . . .
   3 | . . . . X    13-5-18-2
   2 | X . . . .    20 X 17
   1 | . X . . .
   y /----------
     x 1 2 3 4 5
.
T(6,3) = a(7) = 1:
.
   3 | . . . X . .
   2 | X . . . . X    17-5-10-2
   1 | . X . . . .    8 X 25
   y /------------
     x 1 2 3 4 5 6
.
T(6,4) = a(8) = 7:
.
   4 | . X . . . .   4 | . X . . . .   4 | . . X . . .   4 | . . . X . .
   3 | . . . . . .   3 | . . . . . X   3 | . . . . . .   3 | X . . . . .
   2 | X . . . . X   2 | X . . . . .   2 | X . . . . X   2 | . . . . . X
   1 | . X . . . .   1 | . X . . . .   1 | . X . . . .   1 | . X . . . .
   y /------------   y /------------   y /------------   y /------------
     x 1 2 3 4 5 6     x 1 2 3 4 5 6     x 1 2 3 4 5 6     x 1 2 3 4 5 6
.
       17-20-5-2         20-17-5-2         17-13-8-2         17-8-10-5
       9 X 25            9 X 26            10 X 25           13 X 26
.
   4 | . . . . X .   4 | . . X . . .   4 | . . X . . .
   3 | . . . . . .   3 | . . . . . .   3 | . . . . . X
   2 | X . . . . X   2 | X . . . . X   2 | X . . . . .
   1 | . X . . . .   1 | . . X . . .   1 | . . X . . .
   y /------------   y /------------   y /------------
     x 1 2 3 4 5 6     x 1 2 3 4 5 6     x 1 2 3 4 5 6
.
       17-5-20-2         10-13-8-5         13-10-8-5
       18 X 25           9 X 25            9 X 26
.
		

Crossrefs

The general case without excluding the corners of the grid rectangle is covered in A354700 and A354701.

Programs

  • PARI
    see Pfoertner link.