A353532 T(n,m) is the number of non-congruent quadrilaterals with integer vertex coordinates (x1,1), (n,y2), (x3,m), (1,y4), 1 < x1, x3 < n, 1 < y2, y4 < m, m <= n, such that the 6 distances between the 4 vertices are distinct.
0, 0, 0, 0, 3, 1, 1, 7, 12, 11, 1, 11, 26, 52, 40, 4, 23, 50, 94, 147, 105, 4, 30, 69, 127, 198, 301, 190, 10, 49, 103, 192, 302, 444, 583, 379, 10, 58, 127, 244, 387, 576, 754, 1039, 616, 18, 84, 180, 329, 509, 756, 989, 1334, 1680, 987, 18, 94, 209, 389, 611, 910, 1203, 1618, 2052, 2581, 1426
Offset: 3
Examples
The triangle begins \ m 3 4 5 6 7 8 9 10 n \------------------------------------- 3 | 0, | | | | | | | 4 | 0, 0, | | | | | | 5 | 0, 3, 1, | | | | | 6 | 1, 7, 12, 11, | | | | 7 | 1, 11, 26, 52, 40, | | | 8 | 4, 23, 50, 94, 147, 105, | | 9 | 4, 30, 69, 127, 198, 301, 190, | 10 | 10, 49, 103, 192, 302, 444, 583, 379 . . 4 | . C . . . There are six squared distances. 3 | . . . . . They are arranged as follows: 2 | D . . . B AB-BC-CD-DA (counterclockwise) 1 | . A . . . AC X DB (across) y /---------- Here: AB = 3^2 + 1^2 = 10, x 1 2 3 4 5 BC = 13, CD = 5, DA = 2, . AC = 9, DB = 16 10-13-5-2 <==== yielding this 9 X 16 <==== description . . T(5,4) = a(5) = 3: . 4 | . X . . . 4 | . X . . . 4 | . . X . . 3 | . . . . . 3 | . . . . X 3 | . . . . X 2 | X . . . X 2 | X . . . . 2 | X . . . . 1 | . X . . . 1 | . X . . . 1 | . X . . . y /---------- y /---------- y /---------- x 1 2 3 4 5 x 1 2 3 4 5 x 1 2 3 4 5 . 10-13-5-2 13-10-5-2 13-5-8-2 9 X 16 9 X 17 10 X 17 . T(5,5) = a(6) = A353447(5) = 1: . 5 | . . . X . 4 | . . . . . 3 | . . . . X 13-5-18-2 2 | X . . . . 20 X 17 1 | . X . . . y /---------- x 1 2 3 4 5 . T(6,3) = a(7) = 1: . 3 | . . . X . . 2 | X . . . . X 17-5-10-2 1 | . X . . . . 8 X 25 y /------------ x 1 2 3 4 5 6 . T(6,4) = a(8) = 7: . 4 | . X . . . . 4 | . X . . . . 4 | . . X . . . 4 | . . . X . . 3 | . . . . . . 3 | . . . . . X 3 | . . . . . . 3 | X . . . . . 2 | X . . . . X 2 | X . . . . . 2 | X . . . . X 2 | . . . . . X 1 | . X . . . . 1 | . X . . . . 1 | . X . . . . 1 | . X . . . . y /------------ y /------------ y /------------ y /------------ x 1 2 3 4 5 6 x 1 2 3 4 5 6 x 1 2 3 4 5 6 x 1 2 3 4 5 6 . 17-20-5-2 20-17-5-2 17-13-8-2 17-8-10-5 9 X 25 9 X 26 10 X 25 13 X 26 . 4 | . . . . X . 4 | . . X . . . 4 | . . X . . . 3 | . . . . . . 3 | . . . . . . 3 | . . . . . X 2 | X . . . . X 2 | X . . . . X 2 | X . . . . . 1 | . X . . . . 1 | . . X . . . 1 | . . X . . . y /------------ y /------------ y /------------ x 1 2 3 4 5 6 x 1 2 3 4 5 6 x 1 2 3 4 5 6 . 17-5-20-2 10-13-8-5 13-10-8-5 18 X 25 9 X 25 9 X 26 .
Links
- Rainer Rosenthal, Rows n = 3..100, flattened
- Hugo Pfoertner, PARI program
Crossrefs
Programs
-
PARI
see Pfoertner link.
Comments