cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353618 Three-column array giving list of primitive triples for integer-sided triangles whose angle B = 3*C.

Original entry on oeis.org

3, 10, 8, 35, 48, 27, 119, 132, 64, 112, 195, 125, 279, 280, 125, 20, 357, 343, 253, 504, 343, 539, 510, 216, 552, 665, 343, 91, 792, 729, 923, 840, 343, 533, 840, 512, 476, 1035, 729, 1455, 1288, 512, 224, 1485, 1331, 1504, 1575, 729, 17, 1740, 1728, 799
Offset: 1

Views

Author

Bernard Schott, Apr 30 2022

Keywords

Comments

This sequence is inspired by the 1st problem proposed during the 46th Czech and Slovak Mathematical Olympiad 1997 (see link).
The triples (a, b, c) are displayed in increasing order of side b, and if sides b coincide then in increasing order of the side c.
If in triangle ABC, B = 3*C, then the corresponding metric relations between sides are c*a^2= (b-c)^2 * (b+c). <===> a/(b-c) = sqrt(1+b/c).
This metric relation is equivalent to a = m(m^2-2k^2), b = k(m^2-k^2), c = k^3, gcd(k,m) = 1 and sqrt(2) * k < m < 2*k; hence every c is a cube number and always c < b.
When A <> 3*Pi/7 and A <> Pi/5, table below shows there exist these 3 possible configurations: c < b < a; c < a < b and a < c < b:
----------------------------------------------------------------------------
| A | Pi | decr. | 3*Pi/7 | decr. | Pi/5 | decr. | 0 |
---------------------------------------------------------------------------
| B | 0 | incr. | 3*Pi/7 | incr. | 3*Pi/5 | incr. | 3*Pi/4 |
----------------------------------------------------------------------------
| C | 0 | incr. | Pi/7 | incr. | Pi/5 | incr. | Pi/4 |
----------------------------------------------------------------------------
| < | No | c < b < a | c < b=a | c < a < b | c=a < b | a < c < b | No |
----------------------------------------------------------------------------
where 'No' means there is no such corresponding triangle.
If (A,B,C) = (3*Pi/7,3*Pi/7,Pi/7) then a = b with c = 2*a*cos(Pi/7), so isosceles ABC is not an integer-sided triangle.
If (A,B,C) = (Pi/5,3*Pi/5,Pi/5) then a = c with b = a*(1+sqrt(5))/2, so ABC is not an integer-sided triangle.

Examples

			The table begins:
    3,  10,   8;
   35,  48,  27;
  119, 132,  64;
  112, 195, 125;
  279, 280, 125;
   20, 357, 343;
  253, 504, 343,
  539, 510, 216;
................
The smallest such triangle is (3,10,8), it is of type a < c < b with 3/(10-8) = sqrt(1+10/8) = 3/2.
The 2nd triple (35, 48, 27) is of type c < a < b with 35/(48-27) = sqrt(1+48/27) = 5/3.
The 8th triple (539, 510, 216) is the first of type c < b < a with  539/(510-216) = sqrt(1+510/216) = 11/6.
		

Crossrefs

Cf. A335893 (A < B < C are in arithmetic progression), A343063 (B = 2*C).

Programs

  • Maple
    for b from 1 to 2500 do
    for q from 2 to floor((b-1)^(1/3)) do
    a := (b-q^3) * sqrt(1+b/q^3);
    if a= floor(a) and q^3 < b and igcd(a,b,q)=1 and (b-q^3) < a and a < b+q^3 then print(a,b,q^3); end if;
    end do;
    end do;
  • PARI
    lista(nn) = {for (b = 1, nn, for (q = 2, sqrtnint(b-1, 3), if (issquare(z=1+b/q^3), a = (b-q^3) * sqrtint(numerator(z))/sqrtint(denominator(z)); if ((q^3 < b) && (gcd([a, b, q]) == 1) && ((b-q^3) < a) && (a < b+q^3), print1([a, b, q^3], ", ")););););} \\ Michel Marcus, May 11 2022
    
  • Python
    from math import gcd
    from itertools import count, islice
    from sympy import integer_nthroot
    def A353618_gen(): # generator of terms
        for b in count(1):
            q, c = 2, 8
            while c < b:
                d = (b-c)**2*(b+c)
                s, t = divmod(d,c)
                if t == 0:
                    a, r = integer_nthroot(s,2)
                    if r and b-c < a < b+c and gcd(a,b,q) == 1:
                        yield from (a, b, c)
                c += q*(3*q+3)+1
                q += 1
    A353618_list = list(islice(A353618_gen(),30)) # Chai Wah Wu, May 14 2022