A353618 Three-column array giving list of primitive triples for integer-sided triangles whose angle B = 3*C.
3, 10, 8, 35, 48, 27, 119, 132, 64, 112, 195, 125, 279, 280, 125, 20, 357, 343, 253, 504, 343, 539, 510, 216, 552, 665, 343, 91, 792, 729, 923, 840, 343, 533, 840, 512, 476, 1035, 729, 1455, 1288, 512, 224, 1485, 1331, 1504, 1575, 729, 17, 1740, 1728, 799
Offset: 1
Examples
The table begins: 3, 10, 8; 35, 48, 27; 119, 132, 64; 112, 195, 125; 279, 280, 125; 20, 357, 343; 253, 504, 343, 539, 510, 216; ................ The smallest such triangle is (3,10,8), it is of type a < c < b with 3/(10-8) = sqrt(1+10/8) = 3/2. The 2nd triple (35, 48, 27) is of type c < a < b with 35/(48-27) = sqrt(1+48/27) = 5/3. The 8th triple (539, 510, 216) is the first of type c < b < a with 539/(510-216) = sqrt(1+510/216) = 11/6.
Links
- The IMO Compendium, Problem 1, 46th Czech and Slovak Mathematical Olympiad 1997.
- Mathematical Reflections, Solution to problem O467, Issue 5, 2018, p. 26.
- Index to sequences related to Olympiads.
Programs
-
Maple
for b from 1 to 2500 do for q from 2 to floor((b-1)^(1/3)) do a := (b-q^3) * sqrt(1+b/q^3); if a= floor(a) and q^3 < b and igcd(a,b,q)=1 and (b-q^3) < a and a < b+q^3 then print(a,b,q^3); end if; end do; end do;
-
PARI
lista(nn) = {for (b = 1, nn, for (q = 2, sqrtnint(b-1, 3), if (issquare(z=1+b/q^3), a = (b-q^3) * sqrtint(numerator(z))/sqrtint(denominator(z)); if ((q^3 < b) && (gcd([a, b, q]) == 1) && ((b-q^3) < a) && (a < b+q^3), print1([a, b, q^3], ", ")););););} \\ Michel Marcus, May 11 2022
-
Python
from math import gcd from itertools import count, islice from sympy import integer_nthroot def A353618_gen(): # generator of terms for b in count(1): q, c = 2, 8 while c < b: d = (b-c)**2*(b+c) s, t = divmod(d,c) if t == 0: a, r = integer_nthroot(s,2) if r and b-c < a < b+c and gcd(a,b,q) == 1: yield from (a, b, c) c += q*(3*q+3)+1 q += 1 A353618_list = list(islice(A353618_gen(),30)) # Chai Wah Wu, May 14 2022
Comments