cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353689 Convolution of A000716 and the positive integers.

Original entry on oeis.org

1, 5, 18, 53, 139, 333, 748, 1592, 3246, 6379, 12152, 22524, 40764, 72213, 125505, 214378, 360473, 597450, 977196, 1578852, 2522157, 3986658, 6239619, 9675801, 14874445, 22679693, 34314378, 51539173, 76875314, 113913453, 167741728, 245534597, 357361857, 517293186
Offset: 0

Views

Author

Omar E. Pol, May 08 2022

Keywords

Crossrefs

Partial sums of A210843.
Column 1 of A353690.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-j)*(2+3*numtheory[sigma](j)), j=1..n)/n)
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, May 11 2022
  • Mathematica
    nmax = 35; CoefficientList[Series[1/(1 - x)^2 * Product[1/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, May 11 2022 *)
  • PARI
    lista(nn) = Vec(1/(eta('x+O('x^nn))^3*(1-x)^2)); \\ Michel Marcus, May 09 2022

Formula

From Vaclav Kotesovec, May 11 2022: (Start)
G.f.: 1/(1-x)^2 * Product_{k>=1} 1/(1-x^k)^3.
a(n) ~ exp(Pi*sqrt(2*n)) / (2^(5/2) * Pi^2 * sqrt(n)). (End)