A353689 Convolution of A000716 and the positive integers.
1, 5, 18, 53, 139, 333, 748, 1592, 3246, 6379, 12152, 22524, 40764, 72213, 125505, 214378, 360473, 597450, 977196, 1578852, 2522157, 3986658, 6239619, 9675801, 14874445, 22679693, 34314378, 51539173, 76875314, 113913453, 167741728, 245534597, 357361857, 517293186
Offset: 0
Keywords
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add( a(n-j)*(2+3*numtheory[sigma](j)), j=1..n)/n) end: seq(a(n), n=0..35); # Alois P. Heinz, May 11 2022
-
Mathematica
nmax = 35; CoefficientList[Series[1/(1 - x)^2 * Product[1/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, May 11 2022 *)
-
PARI
lista(nn) = Vec(1/(eta('x+O('x^nn))^3*(1-x)^2)); \\ Michel Marcus, May 09 2022
Formula
From Vaclav Kotesovec, May 11 2022: (Start)
G.f.: 1/(1-x)^2 * Product_{k>=1} 1/(1-x^k)^3.
a(n) ~ exp(Pi*sqrt(2*n)) / (2^(5/2) * Pi^2 * sqrt(n)). (End)